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Abstract. Battery swapping for refueling has been embraced by major electric vehi-

cle (EV) manufacturers. To facilitate the operations of battery swapping, this paper

studies the management of a battery swapping network that operates in a ”swap-

locally, charge-centrally” way: batteries are swapped at local swapping stations and

transported to a central charging station for recharging. It remains unclear how to

replenish batteries from central charging stations, fulfill uncertain demand, and trans-

ship batteries among swapping stations to guarantee a high service level. In this

paper, we exploit the network as a repairable inventory management problem with

lateral transshipment. Combining the ideas from process flexibility, we first develop

a stochastic dynamic program to characterize coupling network operations. Then we

introduce a novel robust satisficing model from a target-oriented perspective to address

the curse of dimensionality and distributional ambiguity. Specifically, we first employ

a utility-based Service Level Measure by constraining the severity of inventory viola-

tions caused by uncertain demand. We solve this problem by leveraging an event-wise

ambiguity set and a pooling-group-based enhanced linear decision rule. Out-of-sample

tests demonstrate that our model outperforms several benchmarks in terms of robust-

ness and target attainment. The major insights are twofold: (i) Incorporating lateral

transshipment in the service network reduces substantial costs compared to a system

without transshipment. Furthermore, a chaining network captures most of the bene-

fits of a fully flexible network, and (ii) increasing the cost budget can enhance the

robustness, whereas increasing the penalty cost reduces the probability of inventory

violation by building more battery inventory.

Key words: Battery swapping, Adjustable robust optimization, Robust satisficing,

Distributionally robust optimization, Lateral transshipment

1. Introduction

This research aims to address the battery inventory management problem with uncertain demand

that arises in an EV battery swapping-charging network. In this problem, decision-makers (DMs)

determine initial battery stocks and periodic network operations, including battery replenishment,

fulfillment, and lateral transshipment. The problem is motivated by the wave of vehicle electri-

fication, which holds great promise to reduce greenhouse gas emissions in the transport sector

1
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(accounting for around 30% globally). Over 95% of greenhouse gas emissions by the transport

sector are attributable to oil consumption of internal combustion engines (IEA 2024). Correspond-

ingly, major economies concentrate on EVs powered by batteries and electric motors to alleviate the

dependence on oil: China, the forerunner in this field, incentivizes companies along the EV supply

chain with subsidies to ramp up domestic production. The U.S. Inflation Reduction Act allocates

USD $369 billion for climate investments to promote EV adoption (U.S. Government 2023).

However, the widespread adoption of EVs faces several barriers, primarily due to limitations

in batteries: (i) range anxiety and (ii) high costs. The first upfront issue, range anxiety, refers to

the fear of running out of battery before reaching the destination. This is primarily caused by

the significantly longer recharging time of EVs compared to refueling internal combustion engine

counterparts. Fully recharging an EV battery typically takes an entire night with a home charger,

which is impractical for long-distance trips. Another key issue is the high costs of EV models.

Currently, the total cost of owning EVs remains 10%-50% higher than that of ICE cars. For a light-

duty vehicle, a 100 kWh lithium-ion battery pack costs USD$13, 900, which curbs many potential

adopters despite the low running cost of EVs. As a result, many companies are transitioning to an

innovative business model of battery swapping to address these issues, i.e., establishing a network

of swapping stations to refuel EVs with fully charged batteries.

Battery swapping provides an alternative to plug-in charging by replacing the depleted EV battery

with a fully charged one. This fully automated process can be completed within three minutes,

which largely reduces the waiting time compared to traditional plug-in charging. The unique

benefits of battery swapping tackle the aforementioned issues: (i) Fast service: Range anxiety can

be significantly reduced through completing a swap in under three minutes, far quicker than the 30

minutes required by Tesla’s Supercharger. (ii) High affordability: Battery swapping reduces costs

through bundling with a battery lease contract, under which the EV company retains ownership and

management of the batteries. Consumers can subscribe for just $120 per month instead of paying

$10,000 upfront (Asadi and Nurre Pinkley 2022).

Nevertheless, EV companies are now facing challenges in promoting battery swapping service

mainly because: (i) Inefficient power capacity. Simultaneous fast charging at swapping stations

creates high-peak power demands, which risks local grid congestion. (ii) Heavy upfront costs.

Battery swapping requires considerable investment in pervasive associated infrastructures. Previous

attempts by Tesla and Better Place to deploy battery charging-swapping networks failed due to

heavy upfront investment costs (Mak, Rong, and Shen 2013).
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To overcome these challenges, we are inspired by Qi, Zhang, and Zhang (2023) to consider

a swap-locally, charge-centrally network where batteries are swapped at distributed swapping

stations and transported to a concentrated charging station for recharging. Unlike traditional battery

swapping systems that equip each swapping station with charging bays, the ”swap-locally, charge-

centrally” network leverages the sufficient power capacity of a substation to reduce the pressure

to upgrade local power grids. Moreover, swapping stations can be adapted from the existing gas

stations without the need for expensive charging bays. Therefore, an accessible and affordable

battery swapping network could be achieved. However, how to operate such a network to guarantee

a high service level? How to replenish batteries from central charging stations, fulfill uncertain

demand and transship batteries among swapping stations? These problems remain unresolved.

Our work provides models, solution approaches, and managerial implications for such a novel

business model under demand uncertainty. We summarize our key contributions as follows:

• We present a novel problem relevant to the emerging EV industry by exploiting the “swap-

locally, charge-centrally” network as a two-echelon repairable inventory model with lateral trans-

shipment. We jointly determine coupling network decisions to facilitate battery operations: the

initial battery stocks, replenishment, fulfillment, and lateral transshipment of batteries.

• We develop a stochastic dynamic programming model incorporating ideas from process flex-

ibility. To tackle the curse of dimensionality and distributional ambiguity, we propose a target-

oriented multi-stage robust satisficing (RS) model that allows an inherent consideration in risk

mitigation across the entire probability space. We further define a utility-based Service Level Mea-

sure to assess inventory violations caused by uncertain demand. We also provide theoretical proofs

for its salient properties.

• We derive a tractable linear program leveraging the lifted event-wise ambiguity set and

a pooling-group-based enhanced linear decision rule. The result formulation under event-wise

distributional information can be effectively solved by the state-of-the-art solvers.

• We perform numerical studies on synthetic data to demonstrate the robustness and efficiency

of our proposed RS model. When evaluated on out-of-sample distributions, our model achieves

target inventory levels with greater robustness than traditional distributional robust optimization

(DRO) models. The major managerial insights are derived: (i) Applying lateral transshipment in a

regular battery swapping-charging network ensures a minimum saving of USD$240, 000 (5.26%)

in total costs compared to a network without transshipment. (ii) Our proposed chaining structure

network can preserve the advantages of a fully flexible network. These benefits are dimmed by
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the increasing demand correlations among swapping stations. (iii) The overall risk of violating

inventory targets decreases as the budget for operational costs increases, but escalates sharply as

back-order penalty costs go down.

The rest of this paper is organized as follows: Section 2 reviews the related literature. Section 3

formally defines the problem as a stochastic dynamic program. In Section 4, we extend the model

to an RS setting and incorporate our proposed utility-based SLM. Section 5 presents the proposed

solution approach. Section 6 reports results from extensive numerical studies and discusses the

derived managerial insights. Section 7 concludes with a summary. The appendix contains the proofs

of statements, extensions, as well as additional results for the numerical studies.

2. Literature Review
This section presents a review of related literature pertinent to four main streams: (i) EV battery

swapping operations, (ii) closed-loop repairable inventory management, (iii) lateral transshipment

and process flexibility, and (iv) target-oriented DRO. We also discuss the research gap between the

extant studies and our work.

2.1. EV Battery Swapping Operations

As battery swapping plays a crucial role in scaling up EV adoption, a growing research interest

has arisen in operations management. Mak, Rong, and Shen (2013) were the first to investigate

the swapping station model. They proposed a two-stage robust optimization model to support the

deployment of battery-swapping infrastructure networks. Following this direction, Avci, Girotra,

and Netessine (2015) presented a rigorous analytical comparison between battery swapping and

plug-in charging models. They formulated the problem as a sequential game combining a repairable

inventory model and a behavioral model of motorists. Both papers resolved strategy-level problems

in the early planning stage of battery swapping adoption. Another direction is the operation-level

problem in swapping station management. Schneider, Thonemann, and Klabjan (2018) considered

an infinite time horizon of operation of battery swapping stations. They formulated a Markov

Decision Process (MDP) and proposed an approximate dynamic programming (ADP) algorithm to

solve it. In the same spirit, Asadi and Nurre Pinkley (2022) applied the ADP method to model the

operations at a battery swapping station to decide stochastic scheduling, allocation, and inventory

replenishment problems. Xie, Dai, and Pei (2024) proposed a stationary queuing network model to

characterize the operations of the e-bike battery swapping system.

The aforementioned research overlooked the ”swap-locally, charge-centrally” service network, a

setting that has not been thoroughly explored in the existing literature. To the best of our knowledge,
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Qi, Zhang, and Zhang (2023) was among the first to rigorously analyze the deployment and

management of the ”swap-locally, charge-centrally” service network. They proposed a joint location

and repairable inventory model to capture non-Poisson demand arrivals and stochastic charging

time. However, Qi, Zhang, and Zhang (2023) did not consider lateral transshipments among charging

or swapping stations. Our work extended their work to incorporate lateral transshipment and

provided computationally efficient solutions under the RS framework.

2.2. Closed-loop Repairable Inventory Management

The battery swapping-charging network operation is closely relevant to closed-loop repairable

inventory management, where depleted batteries function as failed parts and recharging is con-

sidered the repairing process (Qi, Zhang, and Zhang 2023). The key distinction is that the central

charging station serves as both a repair factory and a base in our context. The cornerstone of

repairable inventory management, both in theory and practice, is the Multi-Echelon Technique

for Recoverable Item Control (METRIC) model developed by Sherbrooke (1968). The METRIC

system consists of one depot and multiple bases, where bases replace the failed items with on-hand

stocks. Then failed items are returned to the depot for repair. Simultaneously, the base orders stock

replenishment from the depot. The METRIC model has been extensively applied in the military,

e.g., aircraft components, and in the commercial area (Guide Jr and Srivastava 1997). Mak, Rong,

and Shen (2013) and Avci, Girotra, and Netessine (2015) first introduced this classic METRIC

model into the novel context of battery swapping.

Traditional repairable inventory theory focuses on providing exact analytical solutions, but these

solutions depend on restrictive assumptions such as the demand arrival process follows a Poisson

distribution with a fixed mean (Lee 1987). Although they offer valuable insights, these assump-

tions are too strict and incompatible with real-world uncertain demands. Qi, Zhang, and Zhang

(2023) extended the batched order repairable inventory model by relaxing the above assumptions.

Additionally, they provided nuanced structural properties of models through analytical analysis.

However, Qi, Zhang, and Zhang (2023) still failed to consider demand ambiguity and flexible

ordering quantities. Therefore, our work is distinct from this previous literature by employing a

multi-stage robust model to consider demand ambiguity.

2.3. Lateral Transshipment and Process Flexibility

Inspired by Schneider, Thonemann, and Klabjan (2018), we introduce lateral transshipment into the

”swap-locally, charge-centrally” network. This process of reallocating batteries between stations
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is rooted in Lee (1987), which derived the expected backorder level and the number of lateral

transshipments in a multi-echelon repairable inventory system. Extensive settings such as periodic

and continuous review have already been resolved (Olsson 2015). Recently, there has been growing

interest in investigating lateral transshipment (inventory repositioning) in other settings, including

shared mobility and container reallocating in freight logistics; as seen in He, Hu, and Zhang

(2020), Benjaafar et al. (2022), and the references therein. Unlike shared mobility and container

reallocation, our work focuses on a setting where resources are repairable and reusable.

Process flexibility refers to the flexibility for manufacturers to promptly switch between different

products using the same production line (Jordan and Graves 1995). At a broader level, both process

flexibility and lateral transshipment fall under resource pooling (Cui et al. 2023a). Recently, there

have been several efforts to incorporate process flexibility into the design of last-mile delivery

operations, vehicle routing problems, and online retailing (Lyu et al. 2019, Ledvina et al. 2022,

DeValve et al. 2023). However, these studies did not consider the multi-period setting, nor did they

incorporate distributional robust approaches. Our work sheds light on the consideration of process

flexibility within the battery swap process.

2.4. Target-Oriented DRO Approach

The last mainstream study related to our study is the target-oriented DRO. According to Simon

(1955), major DMs often tend to achieve a specified target rather than maximize utility, a philosophy

known as target satisficing, which combines ”satisfy” and ”suffice”. Since Simon (1955)’s work,

target-oriented optimization has seen considerable advancements (Föllmer and Schied 2002, Brown

and Sim 2009). Brown and Sim (2009) axiomatized the decision criterion satisficing measure, which

rewards diversification and aligns with risk-aversion behavior. The satisficing measure is prevalent

in optimization involving probability ambiguity, such as surgery allocation (Chow, Cui, and Long

2022), humanitarian operations (Avishan et al. 2023), and inventory routing problems (Cui et al.

2023b). Given the difficulty in estimating demand distribution before the network deployment,

employing satisficing measures is a natural approach for operational problems in battery swapping

networks.

All the aforementioned works employ the DRO framework, which has gained popularity in

the past decade (Mohajerin Esfahani and Kuhn 2018, Bertsimas, Sim, and Zhang 2019). DRO

addresses uncertainty using an ambiguity set to restrict the distribution to within the vicinity of

the empirical distribution. Instead, our work uses a novel RS framework proposed by Long, Sim,

and Zhou (2023). Unlike DRO, which specifies an ambiguity set of probability distributions, the
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RS framework puts no restriction on the distributions and systematically mitigates the risks of not

achieving targets. Under the RS framework, Cui et al. (2023a) formulated a two-stage resource

pooling problem using DRO from a service perspective. In this paper, we first introduce the RS

framework to decide coupling adaptive operations in the ”swap-locally, charge-centrally” network.

Notation. We use brackets [·] to represent running indices, for example, [𝑁] denotes {1,2, . . . , 𝑁}
([0] = ∅). | · | denotes the number of elements in the set. The boldface lowercase letters represent

column vectors, such as 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ). Operator (·)+ is defined as (𝑥)+ = max{𝑥,0}. 1(0)
denotes a vector with all elements as one (zero), and 𝒆𝑖 denotes 𝑖-th basic vector. The uncertain

quantities are denoted with the symbol ”∼”, e.g., 𝒙̃ is an uncertain vector, with 𝒙 being its realization.

For a random variable 𝑥 with 𝑥 ∼ P,P ∈ P0, P0 represent the set of all possible distributions on

R. For a multi-variant random variable 𝒙̃ with support Z, we use P0(Z) to denote its space of

distributions. Finally, we denote R𝑁,𝑀 the space of all measurable functions from R𝑁 to R𝑀 that

are bounded on compact sets.

3. Battery Swapping Network Operations

In Section 3.1, we model the operations of a ”swap-locally, charge-centrally” network as an MDP and

formulate the associated stochastic dynamic programming model. Section 3.2 introduces process

flexibility to design pooling groups for lateral transshipment a priori. We then incorporate these

pooling groups into a multi-stage DRO model to address demand ambiguity.

3.1. Problem Statement

We consider a two-echelon ”swap-locally, charge-centrally” network consisting of one central

charging station and 𝑁 local swapping stations, as illustrated in Figure 1. Local swapping stations

handle uncertain EV arrivals and exchange depleted batteries from customers for fully charged

batteries. Batteries are centrally charged at the charging station 0, and once fully charged, they are

distributed to each swapping station 𝑖 ∈ [𝑁]. The sequence of events in each period is as follows:

Before the planning horizon, we should consider the initial battery investment at each station,

i.e., 𝑥0 for charging station 0 and 𝑥0
𝑖

for swapping station 𝑖 ∈ [𝑁]. Each battery requires a unit

investment of 𝐾 . At the beginning of each period 𝑡 ∈ [𝑇], the swapping station 𝑖 ∈ [𝑁] holds an

on-hand stock of 𝑥𝑡
𝑖

fully charged batteries to meet customers’ demand. Let 𝑥𝑡0 denote the fully

charged batteries reserved in the central charging station 0. We further denote 𝒙𝑡 = (𝑥𝑡0, 𝑥
𝑡
1, . . . , 𝑥

𝑡
𝑁
)

the vector of inventory levels at all stations. Prior to the EV arrivals, the central planner decides

on the replenishment quantity 𝒒𝑡 = (𝑞𝑡1, . . . , 𝑞
𝑡
𝑁
) for swapping stations from the charging station 0,
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...

Swapping Station

Charging Station

Figure 1 ”Swap-Locally, Charge-Centrally” Network

with a unit ordering cost 𝑐𝑡 > 0 and the transportation time 𝐿0𝑖 > 0. Then the order 𝒒𝑡 in period 𝑡

will arrive at 𝑡 + 𝐿0𝑖. Besides order quantity, the planner determines the number of transshipments

𝒚𝑡 = (𝑦𝑡
𝑖 𝑗
) for all 𝑖, 𝑗 ∈ [𝑁], where 𝑦𝑡

𝑖 𝑗
fully charged batteries are transshipped from the swapping

station 𝑖 to 𝑗 in period 𝑡. Let 𝐿𝑖 𝑗 ≥ 0 denote the transportation time from 𝑖 to 𝑗 and 𝐿𝑖 𝑗 = 𝐿 𝑗𝑖. The

transshipment order 𝒚𝑡 will arrive at the beginning of period 𝑡 + 𝐿𝑖 𝑗 . Battery transshipment incurs

a unit cost of 𝑝𝑡
𝑖 𝑗

, and the costs depend on the transportation distance 𝐿𝑖 𝑗 ≥ 0 (𝐿𝑖𝑖 = 0). When all

swapping stations are out of stock, the swapping station will wait for regular replenishment from

the central charging station.

During the period 𝑡, there are a total of 𝑑𝑡
𝑖

uncertain EV arrivals at the station 𝑖. Let the random

vector 𝒅𝑡 = (𝑑𝑡1, 𝑑
𝑡
2, . . . , 𝑑

𝑡
𝑛) denote demands of all swapping stations in period 𝑡; correspondingly,

𝒅 [𝑡] = (𝒅1, 𝒅2, . . . , 𝒅𝑡) represents demands from period 1 to period 𝑡 (𝒅 [0] = ∅). The demand process

(𝒅𝑡) is assumed to be independent over horizons, and it follows a joint probability distribution P.

When an EV arrives at the swapping station 𝑖, the station prioritizes using its stock on hand to fulfill

the demand. The fulfillment quantity is denoted by 𝒖𝑡 = (𝑢𝑡1, . . . , 𝑢
𝑡
𝑁
). Any excess demand (𝑑𝑡

𝑖
−𝑢𝑡

𝑖
)+

is assumed to be lost sales with a unit penalty cost 𝑏 > 0. We exclude holding costs for batteries

because capital costs are negligible compared to lost-sales penalties (Schneider, Thonemann, and

Klabjan 2018).

At the end of period 𝑡 (i.e., at the beginning of period 𝑡 +1), the swapping station 𝑖 will dispatch a

vehicle to transfer 𝑢𝑡
𝑖
depleted batteries to charging station 0 for recharging. As defined in Qi, Zhang,

and Zhang (2023), we use Δ𝑖 > 0 to represent the lead time of batteries, including charging and
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Figure 2 Sequence of Events at A Swapping Station

transportation time. Therefore, the depleted batteries sent to the charging station 0 in period 𝑡 −Δ𝑖

will be available at the beginning of period 𝑡. We assume all the transportation can be accomplished

while satisfying time windows and capacity constraints. The sequence of events is illustrated in

Figure 2.

This problem is formulated as a stochastic dynamic program with a planning horizon of 𝑇

periods. Given a period 𝑡 ∈ [𝑇], the system state includes two parts. The first part is on-hand

inventory 𝒙𝑡 . The second part is historical information: (i) demand realizations 𝒅 [𝑡−1] ; (ii) historical

replenishment orders 𝒒 [𝑡−1] ; (iii) historical transshipment orders 𝒚 [𝑡−1] and (iv) historical charging

batteries: 𝒖 [𝑡−1] . After observing the system state 𝒔𝑡 =
(
𝒙𝑡 , 𝒅 [𝑡−1] , 𝒒 [𝑡−1] , 𝒚 [𝑡−1] , 𝒖 [𝑡−1]

)
, the planner

makes an action 𝒂𝑡 = (𝒒𝑡 , 𝒚𝑡 , 𝒖𝑡) in response. The action space satisfies the following constraints:

• The total allocated charged batteries
∑
𝑖∈[𝑁] 𝑞

𝑡
𝑖

cannot exceed available batteries at the central

charging station 𝑥𝑡0. The second constraint enforces that the replenishment quantity is always

nonnegative: ∑︁
𝑖∈[𝑁]

𝑞𝑡𝑖 ≤ 𝑥𝑡0 +
∑︁
𝑖∈[𝑁]

𝑢
𝑡−Δ𝑖

𝑖
∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁]

𝑞𝑡𝑖 ≥ 0 ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁]
(1)

• The total transshipment
∑
𝑗∈[𝑁] 𝑦

𝑡
𝑖 𝑗

sent from the swapping station 𝑖 cannot surpass the on-hand

stock 𝑥𝑡
𝑖
. The transshipment amount is always nonnegative:∑︁

𝑗∈[𝑁]
𝑦𝑡𝑖 𝑗 ≤ 𝑥𝑡𝑖 ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁]

𝑦𝑡𝑖 𝑗 ≥ 0 ∀𝑡 ∈ [𝑇], 𝑖, 𝑗 ∈ [𝑁]
(2)

• Fulfillment decision 𝑢𝑡
𝑖
is either the current demand 𝑑𝑡

𝑖
or the updated inventory level, depending

on which one is smaller. To facilitate the discussion, we introduce an auxiliary variable 𝑥𝑡
𝑖

to denote

the updated inventory level:

𝑥𝑡𝑖 = 𝑥𝑡𝑖 + 𝑞
𝑡−𝐿0𝑖
𝑖

+
∑︁
𝑗∈[𝑁]

𝑦
𝑡−𝐿𝑖 𝑗
𝑗𝑖

−
∑︁
𝑗∈[𝑁]

𝑦𝑡𝑖 𝑗
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Moreover, the fulfillment quantity is always nonnegative. Therefore, fulfillment decision 𝑢𝑡
𝑖
satisfies:

𝑢𝑡𝑖 = min{𝑑𝑡𝑖 , 𝑥𝑡𝑖 } ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁]

𝑢𝑡𝑖 ≥ 0 ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁]

The above fulfillment constraint is nonlinear and induces a computational burden. We need

to reformulate it into linear constraints that are easier to handle. For this purpose, the following

assumptions are proposed for the cost parameters 𝑐𝑡 , 𝑝𝑡𝑖 𝑗 , 𝑏:

ASSUMPTION 1. The cost parameters satisfy 𝑏 > 𝑐max + 𝑝max, where 𝑐max = max𝑡∈[𝑇] 𝑐𝑡 and

𝑝max = max𝑖, 𝑗 ,𝑡 𝑝𝑡𝑗𝑖.

This assumption implies that the profit of satisfying demand in the current period is greater than the

costs of ordering and transshipping the battery from any other station 𝑖 ∈ [𝑁]. Similar assumptions

on cost parameters have been made in the transshipment literature to ensure the convexity of the

cost function; see He, Hu, and Zhang (2020) and Benjaafar et al. (2022). Benjaafar et al. (2022)

stated that ”the assumption prevents the unpleasant situation where one might want to ’hide’ the

inventory due to the difference in the repositioning cost.” Under Assumption 1, we can linearize

the fulfillment constraints by the following:

𝑢𝑡𝑖 ≤ 𝑥𝑡𝑖 ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁]

𝑢𝑡𝑖 ≤ 𝑑𝑡𝑖 ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁]
(3)

For brevity, we denote the action space by X(𝒔𝑡) = {𝒂𝑡 | (1), (2), (3)}. Given state 𝒔𝑡 , the action

space X(𝒔𝑡) is a polyhedron. The transition probabilities are induced by the system state update

function for any 𝑖 ∈ [𝑁] and 𝑡 ∈ [𝑇]:

𝑥𝑡+1
𝑖 = 𝑥𝑡𝑖 + 𝑞

𝑡−𝐿0𝑖
𝑖

+
∑︁
𝑗∈[𝑁]

𝑦
𝑡−𝐿𝑖 𝑗
𝑗𝑖︸                  ︷︷                  ︸

Battery income

−
∑︁
𝑗∈[𝑁]

𝑦𝑡𝑖 𝑗 − 𝑢𝑡𝑖︸            ︷︷            ︸
Battery expenditure

(4)

Observe that 𝑥𝑡+1
𝑖

= 𝑥𝑡
𝑖
− 𝑢𝑡

𝑖
following the definition. Together with the fulfillment constraint (3),

we can replace the system update function (4) equivalently with 𝑥𝑡+1
𝑖

≥ 0. In the same spirit, the

inventory dynamics for charging station 0 in period 𝑡 is:

𝑥𝑡+1
0 = 𝑥𝑡0 +

∑︁
𝑖∈[𝑁]

𝑢
𝑡−Δ𝑖

𝑖︸        ︷︷        ︸
Battery income

−
∑︁
𝑖∈[𝑁]

𝑞𝑡𝑖︸    ︷︷    ︸
Battery expenditure

(5)
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Together with the replenishment constraint (1), we equivalently have 𝑥𝑡+1
0 ≥ 0. Historical information

(𝒅 [𝑡] , 𝒒 [𝑡] , 𝒚 [𝑡] , 𝒖 [𝑡]) is updated by simple concatenation. In resolving the initial boundary conditions

𝒔0, we enforce that there is no outstanding order in transit or fulfillment order before the planning

horizon, e.g.,

𝒒𝑡 = 0, 𝒚𝑡 = 0, 𝒖𝑡 = 0 ∀𝑡 ≤ 0

where all zero vectors are in the right dimensions.

Given an action 𝒂𝑡 in period 𝑡, the single-period operational cost 𝐶𝑡 (𝒂𝑡) is the sum of order cost,

transportation cost, and backorder penalty:

𝐶𝑡 (𝒂𝑡) =
∑︁
𝑖∈[𝑁]

©­«𝑐𝑡𝑞𝑡𝑖 +
∑︁

𝑗∈[𝑁], 𝑗≠𝑖
𝑝𝑡𝑖 𝑗 𝑦

𝑡
𝑖 𝑗 + 𝑏(𝑑𝑡𝑖 − 𝑢𝑡𝑖)

ª®¬
Additionally, since each battery incurs a unit cost of 𝐾 , the total initial battery investment is given

by 𝐾1⊤𝒙. Our goal is to minimize the initial investment and the expected operational costs:

𝑍STOC = min
𝒙0≥0

𝐾1⊤𝒙 + min
(𝒂𝑡 )𝑡∈[𝑇 ]

E𝒙0

P


∑︁
𝑡∈[𝑇]

𝐶𝑡 (𝒂𝑡)

 (STOC)

where P represents the joint probability distribution of the demand process, and the transfer proba-

bility is induced by inventory dynamics (4) and (5).

We can recast the Problem (STOC) to a stochastic dynamic program. In the case of initial

inventory 𝒙0, the optimality equation for each period 𝑡 ∈ [𝑇] is defined as follows:

𝑉𝑡 (𝒔𝑡 , 𝒙0) = min
𝒂𝑡∈X(𝒔𝑡 )


∑︁
𝑖∈[𝑁]

©­«𝑐𝑡𝑞𝑡𝑖 +
∑︁

𝑗∈[𝑁], 𝑗≠𝑖
𝑝𝑡𝑖 𝑗 𝑦

𝑡
𝑖 𝑗

ª®¬
+E𝒅𝑡


∑︁
𝑖∈[𝑁]

𝑏(𝑑𝑡𝑖 − 𝑢𝑡𝑖) +𝑉𝑡+1(𝒔𝑡+1, 𝒙
0) | 𝒔𝑡




(6)

where𝑉𝑡 (𝒔𝑡 , 𝒙0) stands for the optimal total expected costs from period 𝑡 until the last period 𝑇 with

the initial battery investment 𝒙0. The terminal cost is given by 𝑉𝑇+1(𝒔𝑇+1) = 0. The expectation in

(6) is taken over the conditional probability of 𝒅𝑡 given 𝒔𝑡 . Hence, we can use 𝑉0(𝒔0, 𝒙
0) to denote

the optimal cost over 𝑇 periods. Problem (STOC) can be rewritten as:

𝑍STOC = min
𝒙0≥0

{
𝐾1⊤𝒙 +𝑉0(𝒔0, 𝒙

0)
}

(DP)
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Figure 3 Three Pooling Groups with 1 Charging Station and 6 Swapping Stations.

Note. The solid arrow shows regular replenishment from the central charging station; the dashed arrow indicates potential lateral

transshipment. Colored shadow regions represent different pooling groups.

The stochastic dynamic programming model (DP) is confronted with the following challenges.

First, it is computationally prohibitive due to high-dimensional state and action variables. In par-

ticular, the state variable 𝒔𝑡 in a period is of 𝑁 + (𝑁 + 1)2(𝑡 − 1) dimensions. Maintaining the

value function 𝑉0(𝒔0, 𝒙
0) induces the notorious ”curse of dimensionality”. The second challenge is

the inaccessibility of the true joint distribution P of uncertain demands 𝒅. Although DMs obtain

distributional knowledge from past demand samples (e.g., means and covariances), the real-world

demand distribution is generally unobservable. The estimated distribution from a data set may per-

form poorly in out-of-sample data, which is called ”optimizer’s curse” (Smith and Winkler 2006).

In reality, high-dimensional distribution poses difficulty in obtaining sufficient data and accurate

estimation (Perakis et al. 2023). Subsequently, we first introduce process flexibility to simplify

lateral transshipment, and then present the multi-stage DRO model to overcome computational

challenges and distributional ambiguity.

3.2. Multi-stage DRO Model with Pooling Groups

Followed by process flexibility, we define flexibility as the ability to satisfy the demands of different

locations by a single swapping station (Jordan and Graves 1995). Inspired by Lee (1987), we divide

𝑁 swapping stations into pooling groups Nℎ for ℎ ∈ [𝐻] to pool the demand within each group.

Each swapping station is assigned to at least one pooling group. Figure 3 gives an illustration

example of pooling groups. The ideal transshipment strategy allows any two swapping stations to

transship inventory. Such a strategy features full flexibility to match battery supply and uncertain
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Station Station

Chaining

Station Station

Chaining

Station Station

Full flexibility

Station Station

Full flexibility

Station Station

Dedicated

Station Station

Dedicated

Figure 4 Flexibility Structures

Note. (i) Dedicated structure D: Each swapping station 𝑖 can only fulfill its own demand. (ii) Chaining (2-chain) structure D:

swapping station 𝑖 is permitted to share inventory with the neighboring station 𝑖 + 1. (iii) Full flexibility structure F : any two

swapping stations that can share inventory through lateral transshipment.

demand. Despite its captivating strengths, full flexibility involves large dimensions of decision

variables in each period (e.g., 𝑁2 variables for 𝑁 stations). Moreover, operating a fully flexible

system can be prohibitively expensive. Therefore, a natural problem arises: How can we implement

partial flexibility while maintaining the most performance of full flexibility?

From the process flexibility literature, we introduce three important flexibility networks G ∈
{D,C,F }, see Figure 4. Each bipartite flexibility network corresponds to a partition of pooling

groups, where the resource nodes are swapping stations 𝑖 ∈ [𝑁] and demand nodes are customers

𝑗 ∈ [𝑁]. An arc (𝑖, 𝑗) connecting node 𝑖 to node 𝑗 implies that station 𝑖 can use its extra inventory

𝑥𝑖 to fulfill the demand 𝑑 𝑗 that has not been satisfied by station 𝑗 .

It is useful to specify the neighborhood set of a swapping station 𝑖. Given a flexibility structure

G ∈ {D,C,F }, we define the neighborhood set Γ(𝑖) as Γ(𝑖) = { 𝑗 | (𝑖, 𝑗) ∈ G}. In Figure 3, Γ(1) =
{2} and Γ(2) = {1,3}; the corresponding pooling groups are N1 = {1,2} and N2 = {2,3}. Under

a defined flexibility G and neighborhood sets, the range of transshipment (2) can be restricted as

follows: ∑︁
𝑗∈Γ(𝑖)

𝑦𝑡𝑖 𝑗 ≤ 𝑥𝑡𝑖 ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁]

𝑦𝑡𝑖 𝑗 ≥ 0 ∀𝑡 ∈ [𝑇], (𝑖, 𝑗) ∈ G
Similarly, the above constraints (1)-(5) involving transshipment decisions 𝑦𝑡

𝑖 𝑗
for 𝑗 ∈ [𝑁] can be

adjusted to 𝑦𝑡
𝑖 𝑗

for 𝑗 ∈ Γ(𝑖).
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The main justification for introducing flexibility structures is to lower the decision dimensions.

Under the chaining structure, we have 𝑂 (𝑁) transshipment variables in a single period compared

to 𝑂 (𝑁2) transshipment variables in the full flexibility network. However, we do admit there is a

loss of optimality. Due to the restrictions on transshipment, there might exist a situation where the

shortest path between two stations does not permit a transfer. The next result states the relations

between optimal values of flexibility structures.

PROPOSITION 1 (Performance Comparison of Flexibility Structures). Let 𝑍∗(G) denote

the optimal objective value of Problem (STOC) that can be achieved by a flexibility structure

G ∈ {D,C,F }, we have: 𝑍∗(D) ≥ 𝑍∗(C) ≥ 𝑍∗(F ).

Proof See Online Appendix A.1. □

The result is straightforward since more flexibility indicates a larger solution space. Indeed, it is

noted that as we add more flexibility, we can obtain more benefits (Simchi-Levi and Wei 2012).

As we will later expound in Section 6, the chaining structure captures the most advantage of a full

flexibility network, which underscores the effectiveness of pooling groups.

To address the computational burdensome and distributional ambiguity of Problem (STOC),

we next develop a novel multi-stage DRO model. Instead of assuming true demand distribution P

is known, the DRO model assumes that the empirical distribution P̂ belongs to a certain ambiguity

set P̂ ⊂ P0(R𝑁𝑇 ). P0 is the entire distribution space of 𝑁𝑇-dimensional random demand 𝒅. The

ambiguity set P̂ is characterized by partial distribution information estimated from historical data;

see details in Bertsimas, Sim, and Zhang (2019). As a result, we seek to minimize the expected

cost under the worst-case distribution within the ambiguity set, i.e., P̂ ∈ P̂:

𝑍DRO = min
𝒙,𝒒,𝒚,𝒖≥0

𝐾1⊤𝒙 + sup
P̂∈P̂

EP̂


∑︁
𝑡∈[𝑇]

𝐶𝑡 (𝒂𝑡)


s.t. Constraints (1)− (5)

(7)

Note that the objective function 𝑍DRO depends on the underlying flexibility structure G. When

the context is clear, we omit this dependence for simplicity. Unlike Problem (STOC), which

requires solving the problem sequentially, Problem (7) provides all the solutions concurrently

against distributional ambiguity. However, there exist several limitations of the DRO model (7):

First, the objective function of minimizing the expected cost does not account for the DM’s attitude

towards risk, nor does it consider service level. Second, DRO does not have a performance guarantee
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when the true distribution deviates from the ambiguity set, namely, P ∈ P0\P̂. To obtain a fully

robust program mitigating risk on the whole probability space, we introduce the framework of RS

proposed by Long, Sim, and Zhou (2023) in the next section.

4. Target-oriented Robust Satisficing Model
This section first extends our multi-stage DRO model to the RS model, and then proposes a utility-

based Service Level Measure to control the degree of inventory violation over the entire probability

space. Finally, we demonstrate how to incorporate it into the RS model to obtain a tractable model.

4.1. Robust Satisficing

It is of vital importance to maintain on-hand inventory within a required window to provide high-

level accessibility. Motivated by Cui et al. (2023b), we anticipate the period 𝑡 inventory level 𝑥𝑡
𝑖

at each swapping station falling into a pre-specified interval [𝜏𝑡
𝑖
, 𝜏𝑡𝑖]. For instance, [𝜏𝑡

𝑖
, 𝜏𝑡𝑖] = [0,5]

indicates that DMs are strongly averse to backorder as well as limiting the excess inventory to less

than 5 units. Let 𝒙̃ ∈V𝑁 denote an 𝑁-dimensional random vector. The double-sided target violation

of 𝒙̃ associated with the required inventory interval [𝝉, 𝝉] is defined by the function:

𝑣𝝉,𝝉 (𝒙̃) = max{𝒙̃ − 𝝉, 𝝉 − 𝒙̃}

= max({𝑥𝑡𝑖 − 𝜏𝑖, 𝜏𝑡𝑖 − 𝑥
𝑡
𝑖 })𝑡∈[𝑇],𝑖∈[𝑁]

Note that the negative violation indicates 𝒙̃ falls within the interval, which indicates no target

violation. Instead of limiting the distribution in our reference ambiguity set P̂ ∈ P̂0, we measure the

system’s worst-case threshold violation over all possible distributions P ∈ P0. For this purpose, we

adopt the RS framework by Long, Sim, and Zhou (2023) as follows:

min
𝑘≥0

𝑘

s.t. Constraints (1)− (5)

EP
[
𝑣𝜏𝑖 ,𝜏𝑖 (𝑥

𝑡
𝑖 )
]
≤ 𝑘Δ(P, P̂) (RS)

∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁],P ∈ P0, P̂ ∈ P̂

𝐾1⊤𝒙 + sup
P̂∈P̂

EP̂


∑︁
𝑡∈[𝑇]

𝐶𝑡 (𝒂𝑡)
 ≤ 𝐶

Constraints (1)-(5) are retained from the DRO model (7). The second constraint imposes that the

worst-case expected loss supP̂∈P̂ EP̂ [𝑣̃] is less than a scaled probability distance 𝑘Δ(P, P̂). The third

constraint enforces a predetermined budget 𝐶 on the worst-case expected total costs.
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The magnitude of the violation 𝑘 ≥ 0 is measured by the statistical distance between a reference

distribution P̂ in the ambiguity set P̂ and all possible distributions P ∈ P0. A larger 𝑘 will incur a

larger expected target violation when evaluated on an unobservable distribution. Hence, intuitively,

𝑘 represents the model’s ability to avoid excessive deviation from the target interval [𝝉, 𝝉]. Long,

Sim, and Zhou (2023) used the empirical distribution as the reference distribution P̂. We extend a

single empirical distribution to a reference ambiguity set P̂ to enhance distributional robustness.

We configure the budget by solving the DRO counterpart of Problem (RS) (He, Hu, and Zhang

2020, Long, Sim, and Zhou 2023):

𝐶DRO = min
𝒙,𝒒,𝒚,𝒖≥0

𝐾1⊤𝒙 + sup
P̂∈P̂

EP̂


∑︁
𝑡∈[𝑇]

𝐶𝑡 (𝒂𝑡)


s.t. Constraints (1)− (5) (DRO)

EP̂

[
𝑣𝜏𝑖 ,𝜏𝑖 (𝑥

𝑡
𝑖 )
]
≤ 0 ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁], P̂ ∈ P̂

Compared to our proposed (RS) that minimizes 𝑘 , (DRO) minimizes the worst-case expected total

costs. Compared to Problem (7), (DRO) additionally ensures that the worst-case expected inventory

violation does not exceed 0 within the reference ambiguity set P, namely EP̂

[
𝑣𝜏𝑖 ,𝜏𝑖 (𝑥

𝑡
𝑖
)
]
≤ 0 for

any P̂ ∈ P̂. Model (DRO) recovers the empirical stochastic model (STOC) as a special case when

P̂ = {P̂}, that is, the ambiguity set is a singleton. We present the relationship between (RS) and

(DRO) in Proposition 2.

PROPOSITION 2. Suppose the model (DRO) is feasible, then the corresponding RS model

(RS) is also feasible for all 𝐶 ≥ 𝐶DRO. In particular, if 𝐶 = 𝐶DRO, the optimal solution to the

Problem (RS) is also optimal to the Problem (DRO). Moreover, if the Problem (RS) is rewritten

as a function of budget 𝐶, i.e., 𝜌(𝐶), then we have 𝜌(𝐶1) ≤ 𝜌(𝐶2) for any 𝐶DRO ≤ 𝐶1 ≤ 𝐶2.

Proof See Online Appendix A.2. □

Proposition 2 implies that (RS) encapsulates (DRO) as a special case when 𝐶 =𝐶DRO. Observe

that the RS constraint reduces to a robust constraint in (DRO) when we evaluate the expected

violation EP
[
𝑣𝜏𝑖 ,𝜏𝑖 (𝑥

𝑡
𝑖
)
]

concerning P = P̂ and set Δ(P, P̂) = 0 by definition. The objective value

𝐶DRO indicates the minimum worst-case costs given that the expected inventory violation is less

than 0 in the ambiguity set. Hence, the budget𝐶 is set at least as𝐶DRO of (DRO). Otherwise, (RS)

would be infeasible even when 𝑘 = 0. The surplus cost 𝐶 − 𝐶DRO justifies the DM’s acceptable

target violation to withstand greater ambiguity.
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From a computational perspective, our (RS) model and its DRO counterpart (DRO) have a

similar computational complexity since they share most constraints; see details in the reformulation

part in Section 6. From a modeling perspective, the model (DRO) solely immunizes against

uncertainty within a restricted ambiguity set P̂, but does not safeguard losses when P ∈ P0\P̂
(Long, Sim, and Zhou 2023). Given the budget 𝐶DRO, the DRO model (DRO) implies that:

EP̂ [𝑣̃] ≤ 0 ∀P̂ ∈ P̂

EP̂ [𝑣̃] ≤ +∞ ∀P̂ ∉ P̂

By contrast, our model (RS) suggests a fundamental consideration in risk mitigation over the whole

probability space P0. The RS constraint imposes upper bounds on all distributions:

EP [𝑣̃] ≤ 𝑘Δ(P, P̂) ∀P ∈ P0, P̂ ∈ P̂

These are justified by our experiments in Section 6. From a managerial standpoint, compared to

tuning the hyperparameter in the DRO literature, the budget 𝐶 in our model (RS) can be attained

by solving (DRO), which is easier for managers to configure and interpret.

4.2. Utility-based Service Level Measure

This section gives details on how to obtain a tractable model (RS). The key point is to define

the explicit form of the probability distance function Δ(P̂,P). The widely-used probability dis-

tances include the Kullback-Leibler divergence (Chen et al. 2018) and the Wasserstein metric

(Mohajerin Esfahani and Kuhn 2018). However, these classic probability distances place a heavy

computational burden, especially in multi-stage DRO models. To ease the computational burden,

we are motivated by Cui et al. (2023a) to define Service Level Measure (SLM) as follows:

DEFINITION 1 (SERVICE LEVEL MEASURE). Given a random inventory violation 𝑣𝝉,𝝉 (𝒙)
and the piece-wise linear utility function 𝑢(𝑣). We only know that the reference distribution P̂

belongs to an ambiguity set P̂. The SLM 𝜌𝝉,𝝉 (·) : V𝑇 ↦→R+ is defined as :

𝜌𝝉,𝝉 (𝒙̃) = inf

{
𝑘 > 0

�����∀𝑡 ∈ [𝑇],

sup
P̂∈P̂

EP̂

[
𝑢

(
𝑣𝜏𝑡 ,𝜏𝑡 (𝑥𝑡)

𝑘

)]
≤ 0

}
= inf

{
𝑘 > 0

�����∀𝑡 ∈ [𝑇], 𝑚 ∈ [𝑀],

sup
P̂∈P̂

EP̂

[
𝑎𝑚𝑣𝜏𝑡 ,𝜏𝑡 (𝑥𝑡) + 𝑏𝑚𝑘

]
≤ 0

}
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Furthermore, its underlying shortfall risk measure is:

𝜇𝑢
P̂
(𝑣̃) = inf

{
𝑎

����EP̂

[
max
𝑚∈[𝑀]

{𝑎𝑚 (𝑣̃ − 𝑎) + 𝑏𝑚}
]
≤ 0

}
with the associated probability distance Δ𝑢 represented as:

Δ𝑢 (P, P̂) = sup
𝑣̃∈V

{
EP [𝑣̃]

����∀𝑚 ∈ [𝑀],

EP̂ [𝑎𝑚 𝑣̃ + 𝑏𝑚] ≤ 0
}

We define the SLM based on utility-based probability distance, which is a dual form of the

shortfall risk measure (Föllmer and Schied 2002). The underlying utility function 𝑢(𝑣) has many

options. When we choose 𝑢(𝑥) = exp(𝑥) − 1, then Δ𝑢 (P, P̂) is equivalent to Kullback–Leibler

divergence ΔKL(P, P̂); see more instances in (Cui et al. 2023a)). For tractability, we choose the

utility function 𝑢(·) as a piece-wise linear function:

𝑢(𝑣) = max
𝑚∈[𝑀]

{𝑎𝑚𝑣 + 𝑏𝑚}

where 𝑎𝑚 ≥ 0, 𝑏𝑚 for each segment 𝑚 ∈ [𝑀] are given. This function preserves the linear structure

of the model to alleviate the computational burden. Furthermore, the piece-wise linear function

can approximate any non-decreasing convex utility function with sufficient pieces (Boyd and

Vandenberghe 2004, Cui et al. 2023b).

We emphasize that SLM inherently considers multiple periods and selects the most robust

solution over all periods. In the case of a single period, SLM falls under the umbrella of Satisficing

Measure framework proposed by Brown and Sim (2009). SLM is also an instance of Coherent

Risk Enveloping Measure that sets the enveloping bounds at all probabilistic levels (Chow, Cui,

and Long 2022). Furthermore, SLM is an instance of the Fragility Measure with the utility-based

probability distance (Long, Sim, and Zhou 2023). Consequently, SLM satisfies a series of salient

properties in the following.

PROPOSITION 3 (Properties of SLM). For any 𝒙̃, 𝒚̃ ∈ V𝑇 , the utility-based SLM 𝜌𝝉,𝝉 (·) :

V ↦ →R+ satisfies the following properties:

1. Monotonicity. If 𝑣𝝉,𝝉 (𝒙̃) ≥ 𝑣𝝉,𝝉 ( 𝒚̃), then 𝜌𝝉,𝝉 (𝒙̃) ≥ 𝜌𝝉,𝝉 ( 𝒚̃).
2. Positive homogeneity. For any 𝜆 ≥ 0, we have 𝜌𝜆𝝉,𝜆𝝉 (𝜆𝒙̃) = 𝜆𝜌𝝉,𝝉 (𝒙̃).
3. Convexity. For any 𝜆 ∈ [0,1], we have 𝜌𝝉,𝝉 (𝜆𝒙̃ + (1−𝜆) 𝒚̃) ≤ 𝜆𝜌𝝉,𝝉 (𝒙̃) + (1−𝜆)𝜌𝝉,𝝉 ( 𝒚̃).
4. Fragility
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(a) Pro-Robustness. If 𝑣𝝉,𝝉 (𝒙̃) ≤ 0, then 𝜌𝝉,𝝉 (𝒙̃) = 0.

(b) Antifragility. If there exists an 𝑡 ∈ [𝑇] such that 𝑣𝜏𝑡 ,𝜏𝑡 (𝑥𝑡) > 0, then 𝜌𝝉,𝝉 (𝒙̃) =∞.

5. Enveloping bound of violation probability. If utility function is lower bounded by 𝑢 ≤ 0, i.e.,

𝑢(𝑣) ≥ 𝑢, and we obtain the optimal SLM 𝑘∗ = 𝜌𝝉,𝝉 (𝒙̃), then for each P̂ ∈ P̂, 𝜃 > 0, we have

P̂
(
𝑣𝜏𝑡 ,𝜏𝑡 (𝑥𝑡) ≥ 𝜃

)
≤

−𝑢
𝑢
(
𝜃
𝑘∗
)
− 𝑢

6. Right continuity. lim𝑎↓0 𝜌−∞,0(𝒙̃ + 𝑎1) = 𝜌−∞,0(𝒙̃), where −∞ denotes the vector with all

elements as −∞.

Proof See Online Appendix A.3. □

Monotonicity captures the DMs’ aversion against higher inventory violation, i.e., if one violation

almost surely dominates another, it would be less preferred under the SLM. The properties of

monotonicity and positive homogeneity are inherited from coherent risk measures proposed by

Artzner et al. (1999). Convexity property indicates a favor of risk diversification, which is justified

by Föllmer and Schied (2002). Besides, convexity is of vital importance to obtain a tractable model.

Pro-robustness dictates that if the random violation is less than 0 almost surely, the corresponding

SLM attains the lowest value 0. On the contrary, antifragility alleges that the violation that always

exceeds the inventory window has an infeasible solution, that is 𝜌𝝉,𝝉 (·) = +∞. Enveloping bound

property provides a probability bound on the inventory violation exceeding any level. We illustrate

the enveloping bound with an example in Figure 5. Thus, using SLM as the objective function

provides a performance guarantee on the inventory violation in the face of uncertain demands.

Finally, we ensure that SLM remains unchanged to an infinitely small decrement with the technical

condition of continuity.

Equipped with SLM, we focus on the reformulation of a tractable model. According to Theorem

1 by Cui et al. (2023a) and SLM defined by Definition 1, the Problem (RS) is rewritten as follows.

THEOREM 1. Under utility-based SLM, the model (RS) can be equivalently reformulated as:

𝜅∗ = inf max
𝑖∈[𝑁]

{𝜌𝝉,𝝉 (𝒙̃𝑖)}

s.t. (1)− (5) (RS −SLM)

𝐾1⊤𝒙 + sup
P̂∈P̂

EP̂


∑︁
𝑡∈[𝑇]

𝐶𝑡 (𝒂𝑡)
 ≤ 𝐶
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Figure 5 Enveloping Probability Bounds on the Inventory Violation Exceeding 𝜃

Note. The underlying utility function is 𝑢(𝑣) = max{−1, 𝑣}, and the enveloping bound is 1/(1 + 𝜃/𝑘∗) for all P̂ ∈ P̂. A lower 𝑘∗ is

preferable since it imposes a tighter bound on the probability of inventory violation exceeding all levels of 𝜃.

where:

𝜌𝝉,𝝉 (𝒙̃𝑖) = inf

{
𝑘𝑖 > 0

�����∀𝑡 ∈ [𝑇], 𝑚 ∈ [𝑀],

sup
P̂∈P̂

EP̂

[
𝑎𝑚𝑣𝜏𝑡

𝑖
,𝜏𝑡𝑖
(𝑥𝑡𝑖 ) + 𝑏𝑚𝑘𝑖

]
≤ 0

}
Proof See Online Appendix A.4. □

The relations among our proposed models are depicted in Figure 6. In the model (RS −SLM),

we consider minimizing the largest fragility max𝑖∈[𝑁]{𝜌𝝉,𝝉 (𝒙̃𝑖)} over 𝑁 swapping stations to ensure

fair network service accessibility. The min-max form is used for two reasons: First, it provides indi-

vidual SLM 𝜌𝝉,𝝉 (𝒙̃𝑖) for each swapping station. We can identify the infeasible subset of constraints

and then develop a new algorithm to improve the solution. Second, it affords extra flexibility to

attach different weights 𝑤𝑖 to each swapping station to reflect their relative importance:

inf max{𝑤1𝜌(𝒙̃1), 𝑤2𝜌(𝒙̃2), . . . , 𝑤𝑁 𝜌(𝒙̃𝑁 )}

It may yield multiple optimal solutions, but some may not be Pareto optimal. The non-Pareto

optimality issue calls for a new model. Hence, a Pareto optimization procedure can be conducted

following the details provided in Algorithm 1 in Online Appendix B.1, which extends the original

RS model. Our proposed RS model is also related to a recently proposed budget-driven DRO model

by Hu, Chen, and Wang (2024). The relationship between our model and theirs is discussed in

Appendix B.2.
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Multi-stage DRO model SSSS

Service Level Measure Robust Satisficing model AAA

Robust Satisficing model under SLM
SSS

        Stochastic model                      Dynamic Programing model( ) ( )

( )

( )

( ) 

Figure 6 The Relations Among Models

5. Solution Approach
This section presents a solution approach to transform Problem (RS −SLM) into a computa-

tionally tractable model that can be solved by off-the-shelf solvers. It addresses two key issues:

how to (i) construct the ambiguity set P̂ and (ii) propose approximation solutions based on a

pooling-group-based linear decision rule.

5.1. Event-wise ambiguity set

To specify the reference ambiguity set P̂, we deploy the Robust Stochastic Optimization (RSO)

framework proposed by Chen, Sim, and Xiong (2020). Under the RSO framework, the uncertainty

is described by an event-wise ambiguity set, where an event can be a sample path or a surrogate

scenario specified by covariate information. In the context of battery swapping, weather conditions

and holidays can be seen as covariates to characterize uncertain demands (Perakis et al. 2023).

Suppose there exist 𝐿 historical samples coupled with covariate information, one can partition the

space of covariatesΩ into 𝑆 disjoint subsets:Ω𝑠, 𝑠 ∈ [𝑆] withΩ𝑠∩Ω𝑠′ = ∅ for all 𝑠, 𝑠′ ∈ [𝑆], 𝑠 ≠ 𝑡 and

∪𝑠∈[𝑆]Ω𝑠 =Ω. Each subset Ω𝑠 contains the samples with the same covariate information. Formally,

we designate each Ω𝑠 as an event 𝑠, which is a discrete random variable taking values in a finite set

[𝑆]. The probability 𝑝𝑠 of the event 𝑠 satisfies
∑
𝑠∈[𝑆] 𝑝𝑠 = 1.

Conditioning on the realization of the event 𝑠 = 𝑠, the support set of the uncertain demand 𝒅 can

be different and is denoted by Z𝑠. The joint distribution of (𝒅, 𝑠) is denoted by P̂ ∈ P̂. Therefore,

we construct the event-wise ambiguity set as follows:
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P̂ =



P̂ ∈ P0
(
R𝑁𝑇 × [𝑆]

)
(𝒅, 𝑠) ∼ P̂
P̂(𝒅𝑠 ≤ 𝒅 ≤ 𝒅

𝑠 | 𝑠 = 𝑠) = 1
∀𝑠 ∈ [𝑆]

EP̂ [𝒅 | 𝑠 = 𝑠] = 𝝁𝑠 ∀𝑠 ∈ [𝑆]
EP̂ [|𝒅 − 𝝁𝑠 | | 𝑠 = 𝑠] ≤ 𝝈𝑠

∀𝑠 ∈ [𝑆]
EP̂

[ ���∑𝑖∈Nℎ

𝑑𝑡
𝑖
−𝜇𝑡𝑠

𝑖

𝜎𝑠
𝑖

��� ��� 𝑠 = 𝑠] ≤ 𝜖 𝑠
ℎ

∀𝑠 ∈ [𝑆], 𝑡 ∈ [𝑇], ℎ ∈ [𝐻]
P̂(𝑠 = 𝑠) = 𝑝𝑠 , ∀𝑠 ∈ [𝑆]


The event-wise ambiguity set includes the descriptive statistics: the support [𝒅𝑠, 𝒅𝑠], means

𝝁𝑠 = (𝜇𝑡
𝑖
)𝑖∈[𝑁],𝑡∈[𝑇] , and the upper bound for mean absolute deviations |𝒅 − 𝝁𝑠 |. In particular, the

fourth constraint is introduced to restrict the correlation between the random demand within a

pooling group Nℎ for all ℎ ∈ [𝐻]. It preserves the linearity instead of using second-order moment

information (e.g., covariance). Given 𝑆 events, we can estimate the parameters in the ambiguity

set by standard techniques in statistics. For example, the empirical means 𝝁𝑠 are determined by

𝝁𝑠 =
∑
𝑙∈Ω𝑠

𝒅𝑙𝑠/|Ω𝑠 |, where 𝑙 index the sample in subset Ω𝑠.

The event-wise ambiguity set F̂ contains non-linear constraints, therefore, we introduce auxiliary

variables 𝒘̃ ∈ R𝑁𝑇 and 𝒗̃ ∈ R𝐻𝑇 in the following. From the lifting and projection theorem of

Bertsimas, Sim, and Zhang (2019), we can define a lifted ambiguity set F̂ which ensures P̂ =∏
(𝒅,𝑠) F̂ .

F̂ =



Q̂ ∈ Q0
(
R𝑁𝑇 ×R𝑁𝑇 ×R𝐻𝑇 × [𝑆]

)
(𝒅, 𝒘̃, 𝒗̃, 𝑠) ∼ Q̂
EQ̂ [𝒅 | 𝑠 = 𝑠] = 𝝁𝑠 ∀𝑠 ∈ [𝑆]
EQ̂ [𝒘̃ | 𝑠 = 𝑠] ≤ 𝝈𝑠 ∀𝑠 ∈ [𝑆]
EQ̂ [ 𝒗̃ | 𝑠 = 𝑠] ≤ 𝝐𝑠 ∀𝑠 ∈ [𝑆]
Q̂
[
(𝒅, 𝒘̃, 𝒗̃) ∈ Z̄𝑠

�� 𝑠 = 𝑠] = 1
∀𝑠 ∈ [𝑆]

Q̂(𝑠 = 𝑠) = 𝑝𝑠 ∀𝑠 ∈ [𝑆]


(8)

where for each 𝑠 = 𝑠, 𝝐𝑠 = (𝜖 𝑠
ℎ
)ℎ∈[𝐻],𝑡∈[𝑇] , and the lifted support set Z̄𝑠 is defined as:

Z̄𝑠 =



(𝒅, 𝒘̃, 𝒗̃) ∈ R𝑁𝑇 ×R𝑁𝑇 ×R𝐻𝑇

𝑑𝑡𝑠
𝑖
≤ 𝑑𝑡

𝑖
≤ 𝑑𝑡𝑠𝑖 ∀𝑖 ∈ [𝑁], 𝑡 ∈ [𝑇]

𝑑𝑡
𝑖
− 𝜇𝑡𝑠

𝑖
≤ 𝑤̃𝑡

𝑖
∀𝑖 ∈ [𝑁], 𝑡 ∈ [𝑇]

𝜇𝑡𝑠
𝑖
− 𝑑𝑡

𝑖
≤ 𝑤̃𝑡

𝑖
∀𝑖 ∈ [𝑁], 𝑡 ∈ [𝑇]∑

𝑖∈Nℎ

𝑑𝑡
𝑖
−𝜇𝑡𝑠

𝑖

𝜎𝑡𝑠
𝑖

≤ 𝑣̃𝑡
ℎ

∀ℎ ∈ [𝐻], 𝑡 ∈ [𝑇]∑
𝑖∈Nℎ

𝜇𝑡𝑠
𝑖
−𝑑𝑡

𝑖

𝜎𝑡𝑠
𝑖

≤ 𝑣̃𝑡
ℎ

∀ℎ ∈ [𝐻], 𝑡 ∈ [𝑇]


(9)
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By introducing auxiliary variables, the lifted ambiguity set F̂ governs the distributions of the

random variable tuple (𝒅, 𝒘̃, 𝒗̃, 𝑠). F̂ contains only linear expectation constraints, and the lifted

support set Z̄𝑠 is a polyhedron. Note that any distribution Q̂ ∈ F̂ can be rewritten as Q̂ =
∑
𝑠∈[𝑆] 𝑝𝑠Q̂𝑠,

where each marginal distribution Q̂𝑠 ∈ F̂𝑠 corresponds to an event 𝑠 ∈ [𝑆] with support set Z̄𝑠

(Chen, Sim, and Xiong 2020). Hence, the ambiguity set contains multi-modal distributions that are

a mixture of 𝑆 distributions.

Our focus is to solve the Problem (RS −SLM), where uncertainty is revealed progres-

sively. In particular, the adaptive decisions 𝑥𝑡0, 𝑥
𝑡
𝑖
, 𝑞𝑡
𝑖
, 𝑦𝑡
𝑖 𝑗

are dependent on (𝒅 [𝑡−1] ,𝒘 [𝑡−1] , 𝒗 [𝑡−1] , 𝑠)

and 𝑢𝑡
𝑖

are dependent on (𝒅 [𝑡] ,𝒘 [𝑡] , 𝒗 [𝑡] , 𝑠). For notational, we denote this dependency by

𝑥𝑡𝑠0 (·), 𝑥𝑡𝑠
𝑖
(·), 𝑞𝑡𝑠

𝑖
(·), 𝑢𝑡𝑠

𝑖
(·), and 𝑦𝑡𝑠

𝑖 𝑗
(·). Under the lifted ambiguity set, we can transform Problem

(RS −SLM) to an equivalent adjustable robust optimization (ARO) optimization problem in

Theorem 2.

THEOREM 2. With the lifted ambiguity set defined by (8) and (9), Problem (RS −SLM) can

be formulated as an ARO problem.

Proof See Online Appendix A.4.

The equivalent ARO problem is presented in the online appendix when proving Theorem 2. The

ARO problem is the robust counterpart of Problem (RS −SLM) under the lifted support set Z̄𝑠

for each 𝑠 ∈ [𝑆]. It is still unsolvable by commercial solvers since it involves infinite constraints and

adaptive variables. Hence, we elaborate on obtaining an implementable model using the pooling-

group-based linear decision rule proposed by Bertsimas, Sim, and Zhang (2019).

5.2. Pooling-group-based Enhanced Linear Decision Rule

The framework of enhanced linear decision rule (ELDR) is employed to endow the model with

affine adaptability (Bertsimas, Sim, and Zhang 2019, Chen, Sim, and Xiong 2020). In particular, we

restrict adaptive decisions to be affinely dependent on the revealed information within one pooling

group. The adaptive decisions are restricted to an affine function set A. In particular, we propose the

following affine functions mapping from R2𝑁𝑡+𝐻𝑡 to R𝑀 that are linearly dependent on the available
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information within pooling groups:

A𝑀
(
𝒅 [𝑡] ,𝒘 [𝑡] , 𝒗 [𝑡]

)
=

𝒇 ∈ R2𝑁𝑡+𝐻𝑡,𝑀

∃ 𝒇 0, 𝒇 1
𝑖𝑙
, 𝒇 2
𝑖𝑙
, 𝒇 3
ℎ𝑙
∈ R𝑀 :

𝑓𝑖

(
𝒅 [𝑡] ,𝒘 [𝑡] , 𝒗 [𝑡]

)
= 𝑓 0

𝑖

+∑ 𝑗∈Γ(𝑖),𝑙∈[𝑡] 𝑓
𝑙1
𝑖 𝑗
𝑑𝑙
𝑖

+∑ 𝑗∈Γ(𝑖),𝑙∈[𝑡] 𝑓
𝑙2
𝑖 𝑗
𝑤𝑙
𝑖

+∑ℎ∈H (𝑖),𝑙∈[𝑡] 𝑓
𝑙3
𝑖ℎ
𝑣𝑙
ℎ


where Γ(𝑖) = { 𝑗 | (𝑖, 𝑗) ∈ G} denotes the neighborhood of the station 𝑖 in G and H(𝑖) = {ℎ | 𝑖 ∈ Nℎ}

denotes the index set of pooling groups that include the station 𝑖. For the charging station 𝑖, we set

Γ(0) = [𝑁] and H(0) = [𝐻] since it connects every swapping station 𝑖. For any station 𝑖 ∈ [𝑁] ∪ 0,

we make adaptive decisions based on the demand information 𝒅 [𝑡] ,𝒘 [𝑡] from Γ(𝑖) swapping stations

and auxiliary information 𝒗 [𝑡] from the pooling groups set H(𝑖). This is different from the classic

LDR, which considers only demand information (He, Hu, and Zhang 2020). As proved in Theorem

2 of Bertsimas, Sim, and Zhang (2019), incorporating auxiliary variables in the LDR would yield

a better approximation than the classic LDR. Also, it differs from ELDR by He, Hu, and Zhang

(2020), we emphasize the information based on the flexible structure G.

Having introduced the pooling-group-based ELDR for adaptive decisions into the ARO model,

we then have a classical affinely adjustable robust counterpart (AARC). Recall that the SLM and

lifted ambiguity set contain only linear constraints; standard techniques from the robust literature

can be leveraged to transform AARC into a linear program. The following proposition demonstrates

the reformulation procedure.

PROPOSITION 4. For any 𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁], 𝑠 ∈ [𝑆] and 𝑚 ∈ [𝑀], the constraint

𝑜𝑡𝑠𝑖 + 𝒛𝑡𝑠𝑖 𝒅 + 𝜷𝑡𝑠𝑖 𝒘 + 𝜸𝑡𝑠𝑖 𝒗

≥ 𝑝𝑠
[
𝑎𝑚 (𝑥𝑡𝑠𝑖 (·) − 𝜏𝑖) + 𝑏𝑚𝑘

]
∀ (𝒅,𝒘, 𝒗) ∈ Z̄𝑠
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can be formulated into the following linear constraints based on the proposed ELDR.

𝝅𝑡𝑠𝑚𝑖1 𝒅𝑠 − 𝝅𝑡𝑠𝑚𝑖2 𝒅
𝑠 + (𝝅𝑡𝑠𝑚𝑖3 − 𝝅𝑡𝑠𝑚𝑖4 )𝝁𝑠+∑︁

ℎ∈[𝐻]

∑︁
𝑙∈[𝑇]

∑︁
𝑖′∈Nℎ

𝜇𝑙𝑠
𝑖′

𝜎𝑙𝑠
𝑖′
(𝜂𝑡𝑠𝑚𝑖ℎ𝑙1 − 𝜙

𝑡𝑠𝑚
𝑖ℎ𝑙1)

≥ 𝑝𝑠𝑎𝑚 (𝑥𝑡𝑠0𝑖 − 𝜏𝑖) + 𝑝𝑠𝑏𝑚𝑘𝑖 − 𝑜𝑡𝑠𝑖
𝜋𝑡𝑠𝑚𝑖𝑖′𝑙1 − 𝜋

𝑡𝑠𝑚
𝑖𝑖′𝑙2 + 𝜋

𝑡𝑠𝑚
𝑖𝑖′𝑙3 − 𝜋

𝑡𝑠𝑚
𝑖𝑖′𝑙4

+ 1
𝜎𝑙𝑠
𝑖′

∑︁
ℎ′∈H (𝑖′)

(𝜂𝑡𝑠𝑚𝑖ℎ𝑙1 − 𝜙
𝑡𝑠𝑚
𝑖ℎ𝑙1) ≤ 𝑧

𝑡𝑠
𝑖𝑖′𝑙 − 𝑝𝑠𝑎𝑚𝑥

𝑡𝑠1
𝑖𝑖′𝑙

∀𝑖′ ∈ Γ(𝑖), 𝑙 ∈ [𝑡 − 1]

𝜋𝑡𝑠𝑚𝑖𝑖′𝑙1 − 𝜋
𝑡𝑠𝑚
𝑖𝑖′𝑙2 + 𝜋

𝑡𝑠𝑚
𝑖𝑖′𝑙3 − 𝜋

𝑡𝑠𝑚
𝑖𝑖′𝑙4

+ 1
𝜎𝑙𝑠
𝑖′

∑︁
ℎ′∈H (𝑖′)

(𝜂𝑡𝑠𝑚𝑖ℎ𝑙1 − 𝜙
𝑡𝑠𝑚
𝑖ℎ𝑙1) ≤ 𝑧

𝑡𝑠
𝑖𝑖′𝑙

∀(𝑖′, 𝑙) ∈ ([𝑁] × [𝑇]) \ (Γ(𝑖) × [𝑡 − 1])

𝜋𝑡𝑠𝑚𝑖𝑖′𝑙3 + 𝜋
𝑡𝑠𝑚
𝑖𝑖′𝑙4 ≤ 𝛽

𝑡𝑠
𝑖𝑖′𝑙 − 𝑝𝑠𝑎𝑚𝑥

𝑡𝑠2
𝑖𝑖′𝑙

∀𝑖′ ∈ Γ(𝑖), 𝑙 ∈ [𝑡 − 1]

𝜋𝑡𝑠𝑚𝑖𝑖′𝑙3 + 𝜋
𝑡𝑠𝑚
𝑖𝑖′𝑙4 ≤ 𝛽

𝑡𝑠
𝑖𝑖′𝑙

∀(𝑖′, 𝑙) ∈ ([𝑁] × [𝑇]) \ (Γ(𝑖) × [𝑡 − 1])

𝜂𝑡𝑠𝑚𝑖ℎ𝑙 + 𝜙
𝑡𝑠𝑚
𝑖ℎ𝑙 ≤ 𝛾𝑡𝑠𝑖ℎ𝑙 − 𝑝𝑠𝑎𝑚𝑥

𝑡𝑠3
𝑖ℎ𝑙

∀ℎ ∈ H (𝑖), 𝑙 ∈ [𝑡 − 1]

𝜂𝑡𝑠𝑚𝑖ℎ𝑙 + 𝜙
𝑡𝑠𝑚
𝑖ℎ𝑙 ≤ 𝛾𝑡𝑠𝑖ℎ𝑙

∀(ℎ, 𝑙) ∈ ([𝐻] × [𝑇]) \ (H (𝑖) × [𝑡 − 1])

𝝅𝑡𝑠𝑚𝑖1 , 𝝅𝑡𝑠𝑚𝑖2 , 𝝅𝑡𝑠𝑚𝑖3 , 𝝅𝑡𝑠𝑚𝑖4 ∈ R𝑁𝑇+ ,𝜼𝑡𝑠𝑚𝑖 ,𝝓𝑡𝑠𝑚𝑖 ∈ R𝐻𝑇+

Proof See Online Appendix A.6.

With Proposition 4, Problem (RS −SLM) can be reformulated into a linear program. The

result reformulation preserves linearity and facilitates practical implementation. The linear problem

includes 𝑂 (𝑁2𝑇2𝑆𝑀) continuous decision variables and 𝑂 (𝑁2𝑇2𝑆𝑀) constraints in total. Given

the number of events 𝑆, both the number of variables and the number of constraints of the resulting

linear program grow quadratically with the number of stations/periods.
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6. Numerical Studies

This section conducts a series of numerical studies on synthetic data to evaluate the effectiveness

of our proposed model and explore managerial insights. The locations of swapping and charging

stations are sampled from NIO’s 45 swapping stations in Shanghai using Amap 2024 (Amap 2024).

For presentation brevity, most details of input data and parameters are relegated to Appendix C.1.

In what follows, we conduct experiments in Section 6.1 to compare our RS model with benchmark

models, showcasing its effectiveness and robustness. The model’s out-of-sample performance under

perturbed distributions is also investigated. Section 6.2 demonstrates the values of transshipment

by comparing models on different flexibility structures. Finally, the impact of budget and penalty

cost are analyzed. The program is coded in Python and executed on a PC with an Intel Core i5-

11300H 3.10GHz and 16 GB RAM using Gurobi 11.0.3. We set 𝜖 = 10−4 and time limit of 2 hours

throughout the experiments. All the problems are solved using their respective AARC.

6.1. Comparison with benchmark models

We benchmark our RS model against the other four models, including variants of our proposed RS

model and the related DRO counterparts. In all variants of the RS model, the embedding utility

function of SLM is set as 𝑢(𝑥) = max{−1, 𝑥, 𝑒𝑥 −1}, which can approximate the exponential utility

function 𝑒𝑥 − 1. Unless stated explicitly, each model uses the ambiguity set in (8) and the ELDR

proposed in Section 5.1. We introduce these five models briefly:

1. DRO model with event-wise information (DRO-S). The first model minimizes the worst-case

expected total cost based on Problem (DRO).

2. DRO model without event-wise information (DRO-NS). This model adapts from DRO-S by

excluding the event-wise ambiguity set. That is to say, we only consider one event 𝑠 = 1 and 𝑝 = 1

as in He, Hu, and Zhang (2020).

3. RS model with event-wise information (RS-S). The third model is our proposed robust

satisficing model in Problem (RS −SLM).

4. RS model without event-wise information (RS-NS). This model is similar to RS-S except that

we do not incorporate scenario information in the ambiguity set.

5. RS model based on mean value (RS-PE). The last benchmark is a special case of RS-S where

we set 𝑑𝑡𝑠
𝑖
= 𝑑

𝑡𝑠

𝑖 = 𝜇𝑡𝑠
𝑖

and there is only one demand realization in each event 𝑠 ∈ [𝑆].
For a fair comparison, all three RS model variants adopt the same budget based on the maximum

total cost of both DRO benchmarks. We calculate the statistics of individual violation 𝑣𝜏𝑡
𝑖
,𝜏𝑡𝑖
(𝑥𝑡
𝑖
),
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Table 1 Comparison of the Inventory Violation Between
Solutions from the Five Benchmarks

𝑁 Model Prob % Mean Std. VaR95% CVaR95%

3 RS-S 5.30 0.40 2.53 0.30 0.52
DRO-S 17.22 0.74 1.98 6.24 7.62
DRO-NS 17.22 0.74 1.98 6.24 7.62
RS-NS 16.98 0.76 2.43 5.52 9.70
RS-PE 60.47 5.08 7.16 21.19 3.34

4 RS-S 3.34 0.25 2.49 0.00 0.25
DRO-S 7.80 0.40 1.55 4.24 5.92
DRO-NS 7.80 0.40 1.55 4.24 5.92
RS-NS 13.83 1.14 4.01 9.13 17.76
RS-PE 63.44 5.01 8.20 12.29 30.80

5 RS-S 6.34 0.39 1.64 3.98 7.44
DRO-S 17.65 0.77 2.04 7.48 5.92
DRO-NS 17.65 0.77 2.04 7.48 5.92
RS-NS 21.88 1.95 6.77 9.17 28.19
RS-PE 52.41 3.96 6.87 7.97 27.53

7 RS-S 3.30 0.23 1.53 0.00 0.23
DRO-S 17.31 0.76 2.07 7.48 7.65
DRO-NS 17.31 0.76 2.07 7.48 7.65
RS-NS – – – – –
RS-PE 62.60 3.53 3.95 7.48 10.95

Note. Values in bold indicate the best performance.

including the probability of being positive (Prob), the expected value (Mean), the standard deviation

(Std), the 95% CVaR, and value at risk at 95% (VaR95%).

Table 1 demonstrates the performance metrics of 5 models for 𝑁 ∈ {3,4,5,7}. Overall, the RS-S

generally dominates other methods in all five metrics because lower metric values indicate better

performance. Second, we observe that our proposed RS-S manifests superior performance over

other models in controlling the violation in average and extreme cases (see Mean and CVaR95%).

This confirms that RS framework mitigates risk over the whole probability space. It can be seen

that RS-PE performs poorly in all metrics due to the overfitting in-sample, since it only considers

deterministic mean values. Moreover, in case 𝑁 = 7, the RS-NS is infeasible with the given moderate

budget. This underscores the importance of incorporating event information inthe RS model. We

also show the box plot of the inventory violation for five models in Figure 7. It is evident that

our proposed (RS −SLM) outperforms the other four models in terms of both the number and

interval of violation samples.

To delve into the optimal decisions of the five models, we investigate the mean values of inventory

dynamics in Figure 8. Almost all the inventory of RS-S falls within the predefined intervals

and exhibits high stability, while RS-PE fluctuates with inconsistent variations. An interesting
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Figure 7 Box plot of inventory violation of five models (𝑁 = 3)

Note. The dots denote violation samples and the curve represents the empirical normal distribution of violations.

1 2 3 4 5 6 7 8 9 10 11 12
Periods

20

0

20

40

60

80

Ba
tte

ry
 In

ve
nt

or
y

Upper

Lower

Upper

Lower

Upper

Lower

Upper

Lower

Upper

Lower

Station 1

1 2 3 4 5 6 7 8 9 10 11 12
Periods

20

0

20

40

60

80

Ba
tte

ry
 In

ve
nt

or
y

Upper

Lower

Upper

Lower

Upper

Lower

Upper

Lower

Upper

Lower

Station 2

1 2 3 4 5 6 7 8 9 10 11 12
Periods

20

0

20

40

60

80

Ba
tte

ry
 In

ve
nt

or
y

Upper

Lower

Upper

Lower

Upper

Lower

Upper

Lower

Upper

Lower

Station 3

1 2 3 4 5 6 7 8 9 10 11 12
Periods

20

0

20

40

60

80

Ba
tte

ry
 In

ve
nt

or
y

Upper

Lower

Upper

Lower

Upper

Lower

Upper

Lower

Upper

Lower

Station 4

DRO-S DRO-NS RS-S RS-NS RS-PE

Figure 8 Mean values of battery inventory dynamics at swapping stations for five Models (𝑠 = 1)

Note. The shadowed area implies the imposed inventory window.

observation is that the RS-S maintains the on-hand inventory around the mean demand steadily

(𝜇1 = 15, 𝜇2 = 30). Hence, this accords with the classic base-stock policy that we replenish the

inventory to reach a pre-defined base stock.

To solidify the anti-fragility and robustness of our proposed model, we conduct another out-

of-sample test that uses the network of 1 charging station and 𝑁 = 4 swapping stations. We add

a perturbation Δ to the mean of the out-of-sample demand as in Li et al. (2024). See details in

Appendix C.2. Additionally, the performance of RS-PE is far inferior to the other four models, so
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Table 2 Out-of-Sample Statistics for Four Models

Distribution Model Prob % Mean Std. VaR95% CVaR95%

Truncated Normal (Δ = −0.1) RS-S 6.90 0.30 1.40 2.21 5.58
DRO-S 11.13 0.57 1.97 4.32 7.34
DRO-NS 11.13 0.57 1.97 4.32 7.34
RS-NS 13.02 0.97 3.70 6.29 15.30

Truncated Normal (Δ = −0.05) RS-S 6.07 0.25 1.24 1.28 4.89
DRO-S 9.29 0.46 1.71 4.32 6.26
DRO-NS 9.29 0.46 1.71 4.32 6.26
RS-NS 12.75 0.96 3.70 6.26 15.30

Truncated Normal (Δ = 0.05) RS-S 4.31 0.16 0.93 0.00 0.16
DRO-S 9.38 0.40 1.46 4.32 5.73
DRO-NS 9.38 0.40 1.46 4.32 5.73
RS-NS 12.75 0.96 3.70 6.26 15.30

Truncated Normal (Δ = 0.1) RS-S 3.80 0.13 0.80 0.00 0.13
DRO-S 20.50 0.78 1.93 4.78 7.26
DRO-NS 20.50 0.78 1.93 4.78 7.26
RS-NS 16.60 1.05 3.73 6.50 15.36

Uniform RS-S 10.55 0.60 2.44 5.00 9.21
DRO-S 16.31 1.05 3.36 7.48 12.73
DRO-NS 16.31 1.05 3.36 7.48 12.73
RS-NS 17.60 1.19 3.87 7.89 15.36

Poisson RS-S 5.02 0.21 1.11 0.03 4.15
DRO-S 7.89 0.38 1.45 4.32 5.77
DRO-NS 7.89 0.38 1.45 4.32 5.77
RS-NS 11.97 0.88 3.58 5.36 14.58

Note. Bold values highlight the best performance in each distribution scenario.

we do not include it in the following comparison. Table 2 summarizes the statistics of out-of-sample
inventory violation from four models under several distributions. Additionally, we normalize the
performance of the four models in Figure 9. The previous observation remains solid: the RS-S
reduces inventory violation and withstands greater demand uncertainty. Hence, we can conclude
that our RS-S model provides highly robust inventory management decisions in battery swapping.

6.2. The Value of Transshipment

We further investigate the value of transshipment by comparing the total costs of (DRO). The
parameter setting is consistent with the former section, except that we assume demands are i.i.d.
among swapping stations. As shown in Figure 10, we depict the average performance indica-
tors of each flexibility structure. As we expected, the lateral transshipment strategy reduces the
total costs, we can observe the following fact, which supports Proposition 1: Cost(Dedicated) ≥
Cost(2-chain) ≥ Cost(Full Flexibility). It is demonstrated that adding a little flexibility in the net-
work, i.e., transforming a dedicated system to the 2-chain structure, evidently drives down the
violation in five metrics. Our results add new evidence to the well-known fact that ”the chaining
structure is almost as good as a full flexibility structure” (Chou et al. 2010).
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Figure 9 Average Performance of RS-S and Benchmark Models

Note. A lower value is preferable, and 1.00 indicates the best performance.

Dedicated
2-chain

Full chain
0.80

0.88

0.96

1.04

1.12

1.20

1.05
1.00 1.00

Cost

Dedicated
2-chain

Full chain
0.8

1.0

1.2

1.4

1.6

1.31

1.00

1.39

Prob

Dedicated
2-chain

Full chain

1.00

1.25

1.50

1.75

2.00

1.54

1.00

1.64

Mean

Dedicated
2-chain

Full chain

0.90

1.05

1.20

1.35

1.50

1.12

1.00

1.33

Std

Dedicated
2-chain

Full chain

1.00

1.25

1.50

1.75

2.00
1.75

1.00 1.00

VaR95%

Dedicated
2-chain

Full chain
0.8

1.0

1.2

1.4

1.6
1.44

1.00

1.15

CVaR95%

Figure 10 Performance of DRO-S Model under Different Flexibility Structures

We further investigate how the demand correlation affects inventory pooling. We conduct the

experiment using varying levels of demand correlation 𝛼 ∈ {0,0.25,0.50,0.75,1.00}. We also con-

sider a general correlation where the correlation can be positive and negative. Table 3 suggests
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Table 3 Comparison of Total Costs (×104 ) of DRO-S Model Under Different Demand
Correlation Levels

Type 𝛼
Dedicated 2-chain Full Flexibility

Cost Gap Cost Gap

Positive

0 496.30 25.44 (5.40%) 472.15 1.28 (0.27%) 470.86
0.25 496.30 25.19 (5.35%) 472.48 1.37 (0.29%) 471.11
0.5 496.30 24.98 (5.30%) 472.87 1.55 (0.33%) 471.32
0.75 496.30 24.77 (5.25%) 473.39 1.86 (0.39%) 471.53
1 496.30 24.67 (5.23%) 474.38 2.75 (0.58%) 471.63

General

0 496.30 25.36 (5.38%) 472.15 1.20 (0.26%) 470.94
0.25 496.30 25.15 (5.34%) 472.48 1.32 (0.28%) 471.16
0.5 496.30 25.12 (5.33%) 472.87 1.69 (0.36%) 471.18
0.75 496.30 24.86 (5.27%) 473.39 1.95 (0.41%) 471.44
1 496.30 24.61 (5.22%) 474.38 2.69 (0.57%) 471.69

Note. Gap = (Cost(Dedicated or 𝑘-Chain) − Cost(Full Flexibility))/Cost(Full Flexibility)

a minimum saving of USD$240,000 (5.26%) in total costs when transshipment is allowed. The

performance gap between 2-chain and full flexibility is very close, ranging from 0.26% to 0.57%.

Hence, the 2-chain achieves the most benefits of inventory sharing, and also incurs a lower trans-

shipment cost than full flexibility does. Furthermore, the cost gap for 2-chain and full flexibility

models slightly increases, from 1.28× 104 to 2.75× 104, while the gap for the dedicated structure

decreases with respect to the correlation 𝛼. It is in line with the observation that the value of

inventory pooling is shrinking with the increase of demand correlation (Cui et al. 2023b).

6.3. Impact of Cost Budget

In Figure 11, we check the budget’s impact on the performance of RS-S and RS-NS models.

Notably, as the budget increases, both models’ average violation probability and means exhibit an

overall decreasing trend, except for the cases where 𝛿 = 2,3. Our RS-S have a smaller probability

and means of inventory violation than RS-NS. This underscores the effectiveness of event-wise

ambiguity set, which captures more accurate covariate information and minimizes fragility caused

by uncertain demand. We provide a tool for the DMs to specify the scaling factor 𝛿 to accommodate

their risk preference. In practice, adjusting the scaling factor 𝛿 manually is more interpretable and

straightforward than tuning hyperparameters in the DRO models.

6.4. Impact of Penalty Cost

Figure 12 reports the total costs for three models as the penalty cost scales up from 100 to 5100.

There is an intuitive fact that higher penalty costs for stock-out will result in higher battery inventory

and total costs. Of special interest are the relative tendencies of total costs and battery costs. The

total cost shows a steady growth trend, whereas the battery cost exhibits a highly unstable fluctuation
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Figure 11 Comparison of (a) Violation Probability and (b) Mean Values of Inventory Violation under Different

Budget Levels 𝐶.

Note. Here we vary the budget𝐶 ∈ {1.2𝐶DRO,1.2𝐶DRO +𝛿 ∗10000} in which scaling factor 𝛿 ranges from 0 to 9. The RS-S achieves

a 0 violation with high probability when the scaling factor 𝛿 exceeds 1.

trend. In particular, the battery costs remain relatively low when penalty costs are below $3600 but

rise sharply as penalty costs increase. The trends exhibit that most costs are incurred by stock-out

penalties rather than investments in batteries. We also observe that the probability of inventory

violation stays relatively high (from 30% to 70%) with low penalty costs (< $3600) but plummet

from 40% to 3% as penalty costs surpass $4100. The sharp change is mainly due to the fact that,

when penalty costs are low relative to battery costs, paying stock-out penalties is more cost-effective

than investing in large quantities of batteries. This counterintuitive result highlights the limitation of

using cost minimization as the sole system objective. Therefore, we recommend excluding penalty

costs from operational costs and instead adopting our proposed SLM as decision criterion.

7. Conclusion

This paper studies the battery inventory management problem with uncertain demand in a ”swap-

locally, charge-centrally” network, where distributed swapping stations replenish from the charging

station and transship to neighboring stations. To leverage the benefits of lateral transshipment, we

first introduce ideas from process flexibility to develop a stochastic dynamic programming model.

To deal with the ”curse of dimensionality” and distributionally ambiguity, we introduce a novel

target-oriented robust satisficing model (RS −SLM) under the robust satisficing framework.

To evaluate the uncertain violation in achieving two-sided targets, we construct a utility-based

Service Level Measure based on the utility function-based probability distance. For tractability, we
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Figure 12 Comparison of (a) Violation probability and (b) Mean Values of Inventory violation under Different

Penalty Costs.

Note. The solid line represents total costs and the dashed line represents battery investment, respectively.

employ an event-wise ambiguity set and a pooling-group-based enhanced linear decision rule. The

numerical study validates our proposed model is highly robust to distributional ambiguity in out-

of-sample tests. Our framework provides a practical tool for operators to operate a ”swap-locally,

charge-centrally” network and balance their cost objectives with service level requirements.

Further research questions pertaining to this problem setting remain to be explored in the future.

From a model perspective, while this study adopts a Service Level Measure constructed by utility-

based probability distance, it would be beneficial to compare the effects of different fragility

measures constructed by other distributional distances. Limited by computational capacity, we do

not investigate the marginal profits of flexibility structure in larger networks. It would be valuable

to quantify the benefits of various flexibility structures (3-chain, 4-chain, etc.) on a large scale in

our problem setting. It would be beneficial to consider designing an efficient sparse structure for

the battery swapping-charging network by optimization techniques. Our model is also flexible to

extend to operational issues, for example, backlogged demand and on-site charging at swapping

stations. Furthermore, integrating charging decisions in battery swap stations with the electricity

market would also be a worthwhile direction.
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Online Appendix for ”Target-Oriented Robust Inventory Management

in Electric Vehicle Battery Swapping Networks”

The online appendix is organized as follows. Appendix A provide the proofs for all statements. Appendix B
shows the extensions of our proposed RS model. Appendix C presents all supplementary materials for numerical
studies.

A Proofs of Statements

A.1 Proof of Proposition 1

Proof. Let (x†, u†, q†, y†) be an optimal solution of model (DP) for dedicated structure D and define the
objective value C

(
x†, u†, q†, y† | D

)
such that:

Z∗(D) = C
(
x†, u†, q†, y† | D

)
where Z∗(D) denote the optimal objective value under dedicated structure D. Observe that (x†, u†, q†, y†) is
feasible in (DP) for chaining structure C. Furthermore, (DP) is a minimization problem, we have:

Z∗(D) = C
(
x†, u†, q†, y† | D

)
= C

(
x†, u†, q†, y† | C

)
≥ Z∗(C)

The first equality holds since the dedicated structure D is a subset of a chaining structure C, so (x†, u†, q†, y†)
yields the same objective value in D and C. The inequality holds true because (x†, u†, q†, y†) is a feasible
solution, and DP is a minimization problem. A similar reasoning applies to the chaining structure C and the
full flexibility structure F , so we omit the details for brevity. We now have Z∗(C) ≥ Z∗(F). Combining two
inequalities, therefore,

Z∗(D) ≥ Z∗(C) ≥ Z∗(F)

A.2 Proof of Proposition 2

Proof. Let (x†, u†, q†, y†) be an optimal solution of the model (DRO). Note that (x†, u†, q†, y†) satisfy all
the constraints in the RS model (RS) since C ≥ CDRO, therefore it is feasible for model (RS). Therefore, any
optimal solution to the model (DRO) must be feasible in the RS model (RS).

We state that, if C = CDRO, then the optimal solution to the model (RS) is also optimal to the model
(DRO). That is to say, the robust satisficing constraint supP̂∈P̂ EP̂ [C (x, u, q, y | G)] ≤ C is tight at the
optimality of the RS model (RS). To see this, we first assume the robust satisficing constraint is not tight,
then we have a budget lower than CDRO. This implies a strictly lower objective in the model (DRO), which
leads to the contradiction of the optimality assumption. Therefore, if C = CDRO, then the optimal solution to
the model (RS) is also optimal to the model (DRO).

If we write the RS model as a parameterized function ρ(C) dependent on a budget C, then we have ρ(C1) ≤
ρ(C2) for any CDRO ≤ C1 ≤ C2. This is straightforward since the feasible region enlarges when we set a higher
budget. Together with the feasibility of the model (DRO), we complete the proof.

A.3 Proof of Proposition 3

Proof. The proof follows partly from the existing research, refer to Hall et al. (2015), Cui et al. (2023), and
Long et al. (2023). Given a utility-based SLM defined by Definition 1, we define the set

K(x̃) =

{
k > 0

∣∣∣∣∣ EP̂

[
max
m∈[M ]

{
amvτt,τt

(x̃t) + bmk
}]

≤ 0,∀t ∈ [T ], P̂ ∈ P̂

}
(S.1)

1
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1. Monoticity. If vτ ,τ (x̃) ≥ vτ ,τ (ỹ), then vτt,τt(x̃t) ≥ vτt,τt(ỹt),∀t ∈ [T ]. For brevity, we would omit indices

when the context is clear. By the monotonicity of EP̂ [u(·)] for any P̂ ∈ P̂, we have

EP̂

[
max
m∈[M ]

{
amvτt,τt

(x̃t) + bmk
}]

≥ EP̂

[
max
m∈[M ]

{
amvτt,τt

(ỹt) + bmk
}]

Hence, for any k ∈ K(x̃), the condition k ∈ K(ỹ) must holds. In other words, K(x̃) is a subset of K(ỹ).
Finally, applying the infimum proves ρτ ,τ (x̃) ≥ ρτ ,τ (ỹ).

2. Convexity. To prove the convexity, we first consider any kx ∈ K(x̃) and ky ∈ K(ỹ), we define kλ =
λkx + (1− λ)ky, λ ∈ [0, 1], where kx and ky satisfy the constraints in K(x̃) and K(ỹ), respectively. Recall
that vτt,τt

(x̃t) = max{xt − τ t, τ t − xt}, hence vτt,τt
(x̃t) is a convex function of x̃t. Without loss of

generality, the utility function is represented by u(·), therefore

EP̂

[
u

(
vτt,τt

(λx̃t + (1− λ)ỹt)

kλ

)]
≤ EP̂

[
u

(
λvτt,τt

(x̃t) + (1− λ)vτt,τt
(ỹt)

kλ

)]
= EP̂

[
u

(
λkx

kλ
vτt,τt

(x̃t)

kx
+

(1− λ)ky

kλ
vτt,τt

(ỹt)

ky

)]
≤ EP̂

[
µu

(
vτt,τt

(x̃t)

kx

)
+ (1− µ)u

(
vτt,τt

(ỹt)

ky

)]
= µEP̂

[
u

(
vτt,τt

(x̃t)

kx

)]
+ (1− µ)EP̂

[
u

(
vτt,τt

(ỹt)

ky

)]
≤ 0

where µ = λkx/kλ, λ ∈ [0, 1]. The first inequality holds due to the convexity of vτt,τt
(·). Then the second

equation breaks the whole term into two separate parts. The second inequality holds since the utility
function u(·) is convex. The last inequality is true for the definition of K(x̃) and K(ỹ). Hence, we can
conclude that for any λ ∈ [0, 1], kx ∈ K(x̃), ky ∈ K(ỹ), we have kλ ∈ K(λx̃+ (1− λ)ỹ).

Therefore, when we take the convex combination of ρτ ,τ (x̃) and ρτ ,τ (ỹ), we have

λρτ ,τ (x̃) + (1− λ)ρτ ,τ (ỹ)

= λ inf

{
kx, kx ∈ K(x̃)

}
+ (1− λ) inf

{
ky, ky ∈ K(ỹ)

}
= inf

{
λkx + (1− λ)ky, kx ∈ K(x̃), ky ∈ K(ỹ)

}
≥ inf

{
kλ, kλ ∈ K(λx̃+ (1− λ)ỹ)

}
= ρτ ,τ (λx̃+ (1− λ)ỹ)

The inequality is true due to λK(x̃) is a convex function of x̃, i.e., λK(x̃)+(1−λ)K(ỹ) ⊆ K(λx̃+(1−λ)ỹ).

3. Positive homogeneity. From the definition of vτt,τt
(x̃t) = max{xt − τ t, τ t − xt}, for all λ > 0, we have

vλτt,λτt(λx̃t) = max{λ(xt − τ t), λ(τ t − xt)} = λvτt,τt(x̃t)

2
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Hence,

ρλτ ,λτ (λx̃) = inf

{
k > 0

∣∣∣∣∣EP̂

[
u

(
vλτt,λτt(λx̃t)

k

)]
≤ 0,∀t ∈ [T ], P̂ ∈ P̂

}

= inf

{
k > 0

∣∣∣∣∣EP̂

[
u

(
λvτt,τt(x̃t)

k

)]
≤ 0,∀t ∈ [T ], P̂ ∈ P̂

}

= inf

{
k > 0

∣∣∣∣∣EP̂

[
u

(
vτt,τt

(x̃t)

k/λ

)]
≤ 0,∀t ∈ [T ], P̂ ∈ P̂

}

= inf

{
λβ > 0

∣∣∣∣∣EP̂

[
u

(
vτt,τt

(x̃t)

β

)]
≤ 0,∀t ∈ [T ], P̂ ∈ P̂

}

= λ inf

{
β > 0

∣∣∣∣∣EP̂

[
u

(
vτt,τt(x̃t)

β

)]
≤ 0,∀t ∈ [T ], P̂ ∈ P̂

}
= λρτ ,τ (x̃)

where β = k/λ. The equation holds true after the notation substitution, as the notation itself does not
affect the function.

4. Pro-Robustness. If vτ ,τ (x̃) ≤ 0, then vτt,τt
(x̃t) ≤ 0, ∀t ∈ [T ]. Recall that utility function u(·) is non-

decreasing and normalized by u(0) = 0, for any k > 0 and P̂ ∈ P̂, we observe that

EP̂
[
u
(
vτt,τt

(x̃t)
)]

= EP̂

[
max
m∈[M ]

{
amvτt,τt

(x̃t) + bmk
}]

≤ EP̂ [u(0)] = 0

The RS constraint holds true almost surely. Hence, we have ρτ ,τ (x̃) = inf{k > 0} = 0.

5. Antifragility. If there exists an t ∈ [T ] such that vτt,τt(x̃t) > 0, then for any k > 0 and P̂ ∈ P̂, there must
be

EP̂

[
max
m∈[M ]

{
amvτt,τt

(x̃t) + bmk
}]

≥ EP̂ [u(0)] = 0

which means the feasible set K(x̃) is an empty set since the t-th robust constraint is always violated. It
is straightforward to see inf K(x̃) = inf ∅ = ∞.

6. Enveloping bound of violation probability. First, we define the optimal SLM k∗ = infk∈K(x) k. Then we
define the set for any t ∈ [T ],

K(x̃t) =

{
k > 0

∣∣∣∣∣ EP̂

[
max
m∈[M ]

{
amvτt,τt

(x̃t) + bmk
}]

≤ 0, P̂ ∈ P̂

}
(S.2)

It is straightforward to see that K(x̃) ⊆ K(x̃t) because any feasible solution in K(x̃) is always feasible in
K(x̃t). Let k

∗
t be the optimal solution on K(x̃t), we have

k∗ ≥ k∗t , t ∈ [T ]

Now we construct the probability enveloping bound for inventory violation. Recall that the utility function
is lower bounded by u ≤ 0, thus we have u(v)− u ≥ 0. Then for ∀P̂ ∈ P̂,∀θ > 0,

P̂
(
vτt,τt

(x̃t) ≥ θ
)
= P̂

(
vτt,τt(x̃t)

k∗t
≥ θ

k∗t

)
= P̂

(
u

(
vτt,τt(x̃t)

k∗t

)
− u ≥ u

(
θ

k∗t

)
− u

)

≤
EP̂

[
u
(

vτt,τt (x̃t)

k∗
t

)]
− u

u
(

θ
k∗
t

)
− u

≤ −u

u
(

θ
k∗
t

)
− u

≤ −u

u
(

θ
k∗

)
− u

3
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The second equation holds since the utility function is non-decreasing. Then the first inequality holds
based on Markov inequality and the fact that u(v)− u ≥ 0. The second inequality is true because of the
definition of K(x̃t), and the last inequality holds because of k∗ ≥ k∗t and u ≤ 0.

7. Right continuity. The proof of Right continuity is similar to that of Theorem 1 in Cui et al. (2023).

A.4 Proof of Theorem 1

Proof. For convenience, we define the feasible set of decisions (x,u, q,y) as X including all the constraints in
(RS). By the definition of utility-based probability distance ∆u:

∆u(P, P̂) = sup
ṽ∈V

{
EP[ṽ]

∣∣∣∣ EP̂ [amṽ + bm] ≤ 0,m ∈ [M ]

}
We first derive the equivalence between the robust satisficing constraint using utility-based probability distance
and the Service Level Measure.

κ∗ = min

{
k ≥ 0

∣∣∣∣∣EP

[
vτt

i,τ
t
i
(xt

i)
]
≤ k∆u(P, P̂),∀t ∈ [T ],

i ∈ [N ],P ∈ P0, P̂ ∈ P̂, (x,u, q,y) ∈ X
}

= inf

{
k > 0

∣∣∣∣∣EP

[
vτt

i,τ
t
i

k

]
−∆u(P, P̂) ≤ 0,∀t ∈ [T ],

i ∈ [N ],P ∈ P0, P̂ ∈ P̂, (x,u, q,y) ∈ X
}

= inf

{
k > 0

∣∣∣∣∣ sup
P∈P0

{
EP

[
vτt

i,τ
t
i
(xt

i)

k

]
−∆u(P, P̂)

}
≤ 0,

∀t ∈ [T ], i ∈ [N ], P̂ ∈ P̂, (x,u, q,y) ∈ X
}

(S.3)

According to Föllmer and Schied (2002), the utility-based probability distance is the dual form of the shortfall
risk measure:

µu
P̂(ṽ) = sup

P∈P0

{EP[ṽ]−∆u(P, P̂)}

Hence, we can rewrite (S.3) by definition of the shortfall risk measure as:

κ∗ = inf

{
k > 0

∣∣∣∣∣µu
P̂

(
vτt

i,τ
t
i
(xt

i)

k

)
≤ 0,∀t ∈ [T ], i ∈ [N ],

P̂ ∈ P̂, (x,u, q,y) ∈ X
}

= inf

{
k > 0

∣∣∣∣∣ inf
{
a

∣∣∣∣EP̂

[
u

(
vτt

i,τ
t
i
(xt

i)

k
− a

)]
≤ 0

}
≤ 0,

∀t ∈ [T ], i ∈ [N ], P̂ ∈ P̂, (x,u, q,y) ∈ X
}

= inf

{
k > 0

∣∣∣∣∣∃a ≤ 0,EP̂

[
u

(
vτt

i,τ
t
i
(xt

i)

k
− a

)]
≤ 0

∀t ∈ [T ], i ∈ [N ], P̂ ∈ P̂, (x,u, q,y) ∈ X
}

= inf

{
k > 0

∣∣∣∣∣ supP̂∈P̂
EP̂

[
u

(
vτt

i,τ
t
i
(xt

i)

k

)]
≤ 0,

∀t ∈ [T ], i ∈ [N ], (x,u, q,y) ∈ X
}

= inf

{
k > 0

∣∣∣∣∣ supP̂∈P̂
EP̂

[
amvτt

i,τ
t
i
(x̃t

i) + bmk
]
≤ 0,

4

Page 39 of 49

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1.434.964.4100



∀t ∈ [T ], i ∈ [N ],m ∈ [M ], (x,u, q,y) ∈ X
}

The first equality and the second equality hold, through Föllmer and Schied (2002)’s dual representation.
Then, the third equality holds since the utility function u(·) is non-decreasing: There exists a ≥ 0 such that

EP̂

[
u

(
vτt

i
,τt

i
(xt

i)

k − a

)]
≤ 0. The reverse is trivial as long as a = 0. The last equality holds due to the definition

of the utility function.
Next, we show the equivalence between Problem (RS) and Problem (RS − SLM). The next lemma states

that the LHS in the robust satisficing constraint is non-decreasing in k, which implies that when k′ > k, the
constraint still holds.

Lemma S1. Let k > 0 be feasible to the constraint

sup
P̂∈P̂

EP̂
[
amvτt,τt

(x̃t) + bmk
]
≤ 0,∀t ∈ [T ],m ∈ [M ]

For any k′ > k, we must have

sup
P̂∈P̂

EP̂
[
amvτt,τt

(x̃t) + bmk′
]
≤ 0,∀t ∈ [T ],m ∈ [M ]

Since k > 0, the constraint can be rewritten as:

sup
P̂∈P̂

EP̂

[
am

vτt,τt
(x̃t)

k
+ bm

]
≤ 0,∀t ∈ [T ],m ∈ [M ]

Given k′ > k and am ≥ 0, we must have 0 ≤ am
vτt,τt (x̃t)

k′ ≤ am
vτt,τt (x̃t)

k . Therefore, for any k′ > k, the following
constraint holds because taking the expectation does not affect the inequality:

sup
P̂∈P̂

EP̂

[
am

vτt,τt
(x̃t)

k′
+ bm

]
≤ 0,∀t ∈ [T ],m ∈ [M ]

This completes the proof of Lemma S1.
By Lemma S1, we can equivalently minimize the maximum of individual ki as follows:

inf max{k1, k2, . . . , kN}

s.t. sup
P̂∈P̂

EP̂

[
amvτt

i,τ
t
i
(x̃t

i) + bmki

]
≤ 0

∀t ∈ [T ], i ∈ [N ],m ∈ [M ]

(x,u, q,y) ∈ X

(S.4)

Let κ∗ and {k∗i }i∈[N ] denote the optimal values for Problem (RS) and Problem (S.4). The direction (S.4) ⇒
(RS) is straightforward by adding auxiliary k ≥ ki,∀i ∈ [N ]. By the fact that the LHS in robust satisficing
constraint is non-decreasing in k, k satisfies the constraints in (RS) and hence is a feasible solution to Problem
(RS). Thus we have maxi∈[N ]{k∗i } = k ≥ κ∗. To see the direction (RS) ⇒ (S.4), we consider any feasible
solution k in (RS), we can construct a feasible solution of (S.4) by setting ki = k,∀i ∈ [N ] such that κ∗ ≥
maxi∈[N ]{k∗i }. Combining two inequalities, we have κ∗ = maxi∈[N ]{k∗i }. Finally, with the definition of SLM,
we can reduce the notations to:

inf max{ρ(x̃1), ρ(x̃2), . . . , ρ(x̃N )}
s.t. (x,u, q,y) ∈ X

A.5 The proof of Theorem 2

Proof. With the definition of the lifted ambiguity set, we rewrite the explicit form of Problem (RS − SLM) as
follows:

κ∗ = inf
ki>0

max
i∈[N ]

{ki}

s.t. xts
i (·) = x1s

i +
t∑

l=1

q
(l−L0i)s
i (·) +

∑
j∈Γ(i)

t∑
l=1

y
(l−Lij)s
ji (·)

5

Page 40 of 49

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1.434.964.4100



−
∑

j∈Γ(i)

t∑
l=1

ylsij(·)−
t∑

l=1

uls
i (·) ∀t ∈ [T ], i ∈ [N ], (d,w,v) ∈ Z̄s, s ∈ [S]

(S.5a)

xts
0 (·) = x1s

0 +
∑
i∈[N ]

t∑
l=1

u
(l−∆i)s
i (·)−

∑
i∈[N ]

t∑
l=1

qlsi (·) ∀t ∈ [T ], (d,w,v) ∈ Z̄s, s ∈ [S] (S.5b)

∑
j∈Γ(i)

ytsij (·) ≤ xts
i (·) ∀t ∈ [T ], i ∈ [N ], (d,w,v) ∈ Z̄s, s ∈ [S]

(S.5c)

uts
i (·) ≤ dtsi ∀t ∈ [T ], i ∈ [N ], (d,w,v) ∈ Z̄s, s ∈ [S]

(S.5d)

sup
Q̂∈F̂

EQ̂

[
amvτt

i,τ
t
i
(xts̃

i (·)) + bmki

]
≤ 0 ∀t ∈ [T ], i ∈ [N ],m ∈ [M ] (S.5e)

sup
Q̂∈F̂

EQ̂

K(x1s̃
0 +

∑
i∈[N ]

x1s̃
i ) +

∑
t∈[T ]

∑
i∈[N ]

ctq
ts̃
i (·)

∑
t∈[T ]

∑
i∈[N ]

 ∑
j∈Γ(i)

ptijy
ts̃
ij (·) + b(dts̃i − uts̃

i (·))

 ≤ C (S.5f)

xs(·), qs(·),ys(·),us(·) ≥ 0 ∀ (d,w,v) ∈ Z̄s, s ∈ [S] (S.5g)

xs(·), qs(·),ys(·),us(·) ∈ A ∀s ∈ [S] (S.5h)

We consider the robust satisficing constraint (S.5e) in Problem (S.5). By the law of total probability, we

rewrite it by Q̂ =
∑

s∈[S] psQ̂s:∑
s∈[S]

ps sup
Q̂s∈F̂s

EQ̂s

[
amvτt

i,τ
t
i
(xts̃

i (·)) + bmki

]
≤ 0 ∀t ∈ [T ], i ∈ [N ],m ∈ [M ] (S.6)

The left term is a semi-infinite maximization problem. Given a specific t ∈ [T ] and i ∈ [N ], we start with the
equivalent moment problem:

sup
∑
s∈[S]

psEQ̂s

[
max
m∈[M ]

{
amvτt

i,τ
t
i
(xt

i(·)) + bmki

}]
s.t. Q̂s

[
(d,w,v) ∈ Z̄s

]
= 1, ∀s ∈ [S], ⇒ dual variable otsi ∈ R

EQ̂s
[d] = µs, ∀s ∈ [S], ⇒ dual variable zts

i ∈ RNT

EQ̂s
[w] ≤ σs, ∀s ∈ [S], ⇒ dual variable βts

i ∈ RNT
+

EQ̂s
[v] ≤ ϵs, ∀s ∈ [S], ⇒ dual variable γts

i ∈ RHT
+

(S.7)

The strong duality holds according to Wiesemann et al. (2014) and Bertsimas et al. (2019), and we associate
constraints of the problem with dual variables otsi ∈ R, zts

i ∈ RNT , βts
i ∈ RNT

+ and RHT
+ . Applying the moment

duality techniques, we can obtain the dual problem:

inf
∑
s∈[S]

otsi + zts
i µs + βts

i σs + γts
i ϵs

s.t. otsi + zts
i d+ βts

i w + γts
i v ≥ ps max

m∈[M ]

{
amvτt

i,τ
t
i
(xts

i (·)) + bmki

}
∀ (d,w,v) ∈ Z̄s, s ∈ [S]

otsi ∈ R, zts
i ∈ RNT ,βts

i ∈ RNT
+ ,γts

i ∈ RHT
+

(S.8)

Observe that the first constraint involves a piece-wise linear function, hence, we have equivalently:

otsi + zts
i d+ βts

i w + γts
i v ≥ ps

[
amvτt

i,τ
t
i
(xts

i (·)) + bmki

]
∀m ∈ [M ], (d,w,v) ∈ Z̄s, s ∈ [S] (S.9)

By the definition of vτt
i,τ

t
i
= max{xt

i−τ ti, τ
t
i−xt

i}, the constraint (S.9) is reformulated to two sets of constraints:

otsi + zts
i d+ βts

i w + γts
i v ≥ ps

[
am(xts

i (·)− τ i) + bmki
]

∀m ∈ [M ], (d,w,v) ∈ Z̄s, s ∈ [S]

otsi + zts
i d+ βts

i w + γts
i v ≥ ps

[
am(τ i − xts

i (·)) + bmki
]

∀m ∈ [M ], (d,w,v) ∈ Z̄s, s ∈ [S]

(S.10)
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Inserting the above constraints (S.10) into the dual problem (S.8), and combining with the primal constraint
(S.6), we have: ∑

s∈[S]

otsi + zts
i µs + βts

i σs + γts
i ϵs ≤ 0 ∀t ∈ [T ], i ∈ [N ]

otsi + zts
i d+ βts

i w + γts
i v ≥ ps

[
am(xts

i (·)− τ i) + bmki
]

∀t ∈ [T ], i ∈ [N ],m ∈ [M ], (d,w,v) ∈ Z̄s, s ∈ [S]

otsi + zts
i d+ βts

i w + γts
i v ≥ ps

[
am(τ i − xts

i (·)) + bmki
]

∀t ∈ [T ], i ∈ [N ],m ∈ [M ], (d,w,v) ∈ Z̄s, s ∈ [S]

otsi ∈ R, zts
i ∈ RNT ,βts

i ∈ RNT
+ ,γts

i ∈ RHT
+ ∀t ∈ [T ], i ∈ [N ], s ∈ [S]

(S.11)

By the similar reformulation, we rewrite the constraint (S.5f) as:∑
s∈[S]

os + zsµ
s + βsσ

s + γsϵ
s ≤ C

os + zsd+ βsw + γsv ≥ ps

 ∑
i∈[N ]∪0

Kx1s
i +

N∑
i=1

T∑
t=1

ctq
ts
i (·) + bt(d

ts
i − uts

i (·)) +
∑

j∈Γ(i)

ptijy
ts
ji(·)


∀ (d,w,v) ∈ Z̄s, s ∈ [S]

os ∈ R, zs ∈ RNT ,βs ∈ RNT
+ ,γs ∈ RHT

+

(S.12)

Inserting the result constraints into Problem (S.5), we obtain the result ARO problem.

A.6 Proof of Proposition 4

Proof. For any t ∈ [T ], i ∈ [N ], s ∈ [S] and m ∈ [M ], the reformulation is independent. We focus on the
following constraint:

otsi + zts
i d+ βts

i w + γts
i v ≥ ps

[
am(xts

i (·)− τ i) + bmki
]

∀ (d,w,v) ∈ Z̄s, s ∈ [S]

For adaptive decisions, we replace adaptive decision xts
i (·) by explicit ELDR:

xts
i (·) = xts0

i +
∑

i′∈Γ(i),
l∈[t−1]

xts1
ii′ld

l
i′ +

∑
i′∈Γ(i),
l∈[t−1]

xts2
ii′lw

l
i′ +

∑
h∈H(i),
l∈[t−1]

xts3
ihlv

l
h

By rearranging the terms in the equation, we have

zts
i d+ βts

i w + γts
i v − psam

 ∑
i′∈Γ(i),
l∈[t−1]

xts
ii′ld

l
i′ +

∑
i′∈Γ(i),
l∈[t−1]

xts2
ii′lw

l
i′ +

∑
h∈H(i),
l∈[t−1]

xts3
ihlv

l
h


≥ psam(xts0

i − τ i) + psbmki − otsi ∀t ∈ [T ], i ∈ [N ],m ∈ [M ], (d,w,v) ∈ Z̄s, s ∈ [S]

It remains to solve the minimization subproblem on the left-hand side. Inserting the lifted support set, we now
have:

inf
(d,w,v)

zts
i d+ βts

i w + γts
i v − psam

 ∑
i′∈Γ(i),
l∈[t−1]

xts1
ii′ld

l
i′ +

∑
i′∈Γ(i),
l∈[t−1]

xts2
ii′lw

l
i′ +

∑
h∈H(i),
l∈[t−1]

xts3
ihlv

l
h


s.t. d ≥ ds ⇒ dual variable πtsm

i1 ∈ RNT
+

− d ≥ −d
s ⇒ dual variable πtsm

i2 ∈ RNT
+

w + d ≥ µs ⇒ dual variable πtsm
i3 ∈ RNT

+

w − d ≥ −µs ⇒ dual variable πtsm
i4 ∈ RNT

+

vlh +
∑

i′∈Nh

dli′

σls
i′

≥
∑

i′∈Nh

µls
i′

σls
i′

∀h ∈ [H], l ∈ [T ] ⇒ dual variable ηtsmihl ∈ R+

vlh −
∑

i′∈Nh

dli′

σls
i′

≥ −
∑

i′∈Nh

µls
i′

σls
i′

∀h ∈ [H], l ∈ [T ] ⇒ dual variable ϕtsm
ihl ∈ R+
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By strong duality (Bertsimas et al., 2019), we have:

sup
(πtsm

i1 ,πtsm
i2 ,πtsm

i3 ,

πtsm
i4 ,ηtsm

i ,ϕtsm
i )≥0

πtsm
i1 ds − πtsm

i2 d
s
+ (πtsm

i3 − πtsm
i4 )µs +

∑
h∈[H]

t∑
l=1

∑
i′∈Nh

µls
i′

σls
i′
(ηtsmihl1 − ϕtsm

ihl1)

s.t. πtsm
ii′l1 − πtsm

ii′l2 + πtsm
ii′l3 − πtsm

ii′l4 +
1

σls
i′

∑
h′∈H(i′)

(ηtsmihl1 − ϕtsm
ihl1)

≤ ztsii′l − psamxts1
ii′l ∀i′ ∈ Γ(i), l ∈ [t− 1] (S.13a)

πtsm
ii′l1 − πtsm

ii′l2 + πtsm
ii′l3 − πtsm

ii′l4 +
1

σls
i′

∑
h′∈H(i′)

(ηtsmihl1 − ϕtsm
ihl1)

≤ ztsii′l ∀(i′, l) ∈ ([N ]× [T ]) \ (Γ(i)× [t− 1]) (S.13b)

πtsm
ii′l3 + πtsm

ii′l4 ≤ βts
ii′l − psamxts2

ii′l ∀i′ ∈ Γ(i), l ∈ [t− 1] (S.13c)

πtsm
ii′l3 + πtsm

ii′l4 ≤ βts
ii′l ∀(i′, l) ∈ ([N ]× [T ]) \ (Γ(i)× [t− 1]) (S.13d)

ηtsmihl + ϕtsm
ihl ≤ γts

ihl − psamxts3
ihl ∀h ∈ H(i), l ∈ [t− 1] (S.13e)

ηtsmihl + ϕtsm
ihl ≤ γts

ihl ∀(h, l) ∈ ([H]× [T ]) \ (H(i)× [t− 1]) (S.13f)

πtsm
i1 ,πtsm

i2 ,πtsm
i3 ,πtsm

i4 ∈ RNT
+ ,ηtsm

i ,ϕtsm
i ∈ RHT

+ (S.13g)

We emphasize the index set of each constraint, which inherently follows the rules in affine functions A. Con-
sequently, for any t ∈ [T ], i ∈ [N ], s ∈ [S] and m ∈ [M ], the RS constraint is equivalent to the following
constraint: 

πtsm
i1 ds − πtsm

i2 d
s
+ (πtsm

i3 − πtsm
i4 )µs +

∑
h∈[H]

t∑
l=1

∑
i′∈Nh

µls
i′

σls
i′
(ηtsmihl − ϕtsm

ihl )

≥ psam(xts0
i − τ i) + psbmki − otsi

(S.13a)− (S.13g)

B Extensions

B.1 Pareto optimization Procedure

The Problem (RS − SLM) minimizes the worst-off SLM over N swapping stations to address the fairness issue.
It may yield multiple optimal solutions, but some may not be Pareto optimal. For better understanding, we
provide an example. Consider N = 3 and two sets of individual SLMs given by:

ρ∗
1 = {6, 5, 4}, ρ∗

2 = {6, 3, 2}

These two solutions are optimal in the sense of minimizing the worst SLM, which is 6. Nevertheless, ρ∗
1 is not

Pareto optimal since we can strictly decrease one ρ∗i without increasing the other. Therefore, we present in
Algorithm (1) an iterative algorithm to obtain Pareto optimal solutions, adapted from lexicographic optimization
by Qi (2017) and Li et al. (2024). At each iteration, we minimize the worst SLM over set Ln while imposing
upper bounds on individual SLM {ρτ ,τ (x̃i)}i∈[N ]. These upper bounds are reasonable due to Lemma S1, and
they are optimal values obtained from the previous iterations. In iteration n′, the SLM for stations in set In′

cannot exceed the optimal value ρ∗n′ attained. For stations in Ln, we require SLM not to exceed the ρ∗n. If the
optimal SLM ρ∗n+1 is attained, we again find stations with SLM ρ∗n+1 and add them into the set In+1. Then
Ln+1 is obtained by subtracting In+1 from Ln. A new problem is further solved over Ln+1. This procedure
repeated until Ln+1 = ∅, and the optimal SLM satisfies:

ρτ ,τ (x̃i) = ρ∗n′ , i ∈ In′ , n′ ∈ [n+ 1]

To guarantee the closure of the feasible region, we need a technical condition that ρτ ,τ (x̃i) ≥ ϵ to replace
ρτ ,τ (x̃i) > 0. This condition shall not compromise the optimality since a sufficiently small positive ϵ can
always be selected (Chen et al., 2015; Chow et al., 2022). This procedure keeps the updated optimal SLM
{ρτ ,τ (x̃i)}i∈[N ] no worse than that of the last iteration. Since the original optimal solution (x∗

n,u
∗
n, q

∗
n,y

∗
n) is

always feasible for the updated problem, see Step 3. It is natural to solve the new problem from the solution
(x∗

n,u
∗
n, q

∗
n,y

∗
n) instead of solving from scratch. In practice, we can preserve the current optimal basis and

apply the simplex algorithm for LP (see Chapter 5 in Bertsimas and Tsitsiklis (1997)). This typically saves
many iterations, thus accelerating the computation.
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Algorithm 1 Pareto Optimization Procedure

1: Set ϵ > 0, n := 0,L0 := [N ], I0 := ∅, ρ∗0 := ∞ and any feasible solution (x∗
0,u

∗
0, q

∗
0,y

∗
0).

2: while Ln ̸= ∅ do
3: Solve the following problem, starting from solution (x∗

n,u
∗
n, q

∗
n,y

∗
n).

ρ∗n+1 = inf max
i∈Ln

{ρτ ,τ (x̃i)}

s.t. ρτ ,τ (x̃i) ≤ ρ∗n′ , i ∈ In′ , n′ ∈ [n] ∪ 0

ρτ ,τ (x̃i) ≤ ρ∗n, 0 i ∈ Ln

ρτ ,τ (x̃i) ≥ ϵ, i ∈ [N ]

(x,u, q,y) ∈ X

(S.14)

4: Let ρ∗n+1 and (x∗
n+1,u

∗
n+1, q

∗
n+1,y

∗
n+1) be optimal value and minimizer of Problem (S.14).

5: Set In+1 = {j ∈ Ln|ρτ ,τ (x̃j) := ρ∗n+1} and Ln+1 := Ln\In+1.
6: Increase n := n+ 1.
7: end while
8: return (x∗

n,u
∗
n, q

∗
n,y

∗
n), and {ρτ ,τ (x∗

i )}i∈[N ]

Qi (2017) proposed a lexicographic minimization algorithm to sequentially minimize the maximum Delay
Unpleasantness Measure over N participants. We tailor their method in two ways: First, our proposed SLM
preserves the model’s linear structure, and hence, we can apply LP sensitivity analysis techniques to obtain a
new optimal solution rather than solving the new problem from scratch (i.e., Step 3). This is more computa-
tionally efficient and appropriate for our problem. Second, compared to the subproblem solved in Qi (2017),
we additionally impose upper bounds on SLM of Ln in Problem (S.14). Adding the constraints does not affect
the optimality while enhancing the bounds.

B.2 The Relation to Budget-Driven Model

Hu et al. (2024) proposed a budget-driven DRO model for the multi-period hub location problem with uncertain
periodic demands. They constrain each expected periodic cost within a budget and maximize robustness by
maximizing the size of the ambiguity set. Our work differentiates from theirs in two ways. First, we focus
on limiting the total costs under a budget instead of periodic costs. Second, the budget-driven DRO model is
based on the DRO framework, whereas our model is proposed under the RS framework. Given the periodic
operational costs C = (Ct)t∈[N ], we can constrain the expected cost in each period to be less than the budget
target.

sup
P̂∈P̂

EP̂

∑
i∈[N ]

ctq
t
i + b(dti − ut

i) +
∑

j∈[N ],j ̸=i

ptijy
t
ji

 ≤ Ct ∀t ∈ [T ]

where we limit the periodic operating cost. We can tune the operational budget for each period by
∑

t∈[T ] Ct =

C −K(x0 +
∑

i∈[N ] x
0
i ), where the initial battery investment cost K(x0 +

∑
i∈[N ] x

0
i ) is pre-determined before

demand arrives. Ct for any period tmay be considered uncertain and independent, see details in Hu et al. (2024).
Moreover, we can modify our model to maximize the robustness following the same vein in Hu et al. (2024).
Suppose the ambiguity set P̂ relates to the size parameter r ≥ 0, e.g., probability-distance-based ambiguity set
P̂(r). We identify the maximal size of the ambiguity set concerning which the worst-case inventory meets the
target. Hence, the budget-driven model (BDO) can be written as:

max
r≥0

r

s.t. Constraints (1)− (5)

EP̂
[
vτ i,τ i

(xt
i)
]
≤ 0 ∀t ∈ [T ], i ∈ [N ], P̂ ∈ P̂(r)

sup
P̂∈P̂(r)

EP̂

∑
i∈[N ]

ctq
t
i + b(dti − ut

i) +
∑

j∈[N ],j ̸=i

ptijy
t
ji

 ≤ Ct ∀t ∈ [T ]

(BDO)

Both (RS) and (BDO) essentially maximize the model’s robustness. (RS) achieves this by minimizing the
fragility by limiting the statistical distance the true distribution deviates from the reference distribution. Instead,
(BDO) achieves this by maximizing the ambiguity set size, which is defined by the deviation from the reference
distribution. Intuitively, (RS) maximizes robustness externally from the ambiguity set, whereas (BDO) does
so internally.
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Figure S.1: Time-of-use electricity prices of Shanghai

C Supplementary Materials in Numerical Studies

C.1 Input Data and Parameters

The locations of swapping and charging stations are sampled from NIO’s 45 swapping stations in Shanghai using
Amap 2024 (Amap, 2024). We calculate the travel times between any two stations by dividing the distances by
a 30 km/hour speed. The times are rounded to the next full period. We use Google Optimization Tools (Perron
and Furnon, 2024) to solve the TSP solution for each instance and label the swapping station 1 through N by
following the sequence of the TSP tour. Using the resulting label, we adopt the chaining structure such that
two neighboring swapping stations form a pooling group.

Regarding daily battery swapping demand, a key factor is whether the day is a workday. We assume there
are two event realizations S = 2; s̃ = 1 indicates weekends and s̃ = 2 represents workdays. The probabilities are
p1 = 0.3 and p2 = 0.7 respectively. Intuitively, the demands of swapping stations within the same pooling group
are likely correlated. Hence, we assume that the demands of a pooling group are jointly normally distributed.
Specifically for a chaining structure, we consider a truncated bivariate normal distribution (d̃ti, d̃

t
i+1) ∼ N(µ,Σ).

The marginal probability distribution function of dti is a truncated normal distribution N(µts
i , σts

i ) with support
{dti : µts

i − 3σts
i ≤ dti ≤ µts

i + 3σts
i }. The demands among pooling groups are i.i.d. According to empirical

evidence, there is a higher traffic volume on weekdays than on weekends. We hence set µts
i = ξt(5 + 5s) for all

i ∈ [N ] and t ∈ [T ], where ξt is a scaling factor considering the distribution of hourly demand for batteries. As
in Bertsimas et al. (2019), we let σt

i = µts
i · ϵs in which ϵ1 = ϵ2 = 0.1. The covariance matrix Σ is given by

[Σ]ij =

{
ασiσj if i, j ∈ Nh,

σ2
j otherwise,

(S.15)

where α ∈ [0, 1] is the correlation coefficient. We approximate the non-positive definite matrix using the nearest
positive definite matrix.

Based on the above distribution, we randomly sample 100,000 demand sample paths. The first 80% of the
data is used as the training set to obtain the optimal solution, and the last 20% of the data is used as the
test set for out-of-sample testing. Then the parameters for the ambiguity set are obtained from the observed
samples. The empirical distribution P̂ is derived from samples, where p̂s is the empirical frequency for event
s in the observations. When the event information is not considered, the parameters of the ambiguity set are
obtained by pooling the sample data.

The deterministic parameters are obtained from multiple resources, which we briefly show in the Table S.1.
From NIO’s report, the battery capacity at each swapping station is 20, thus we set the inventory window as
[5, 20]. We consider the Standard Range Battery of 75 kWh capacity, widely equipped in models NIO eT5, eT7,
and eS8. The standard fast charger will take TC = 3 hours to charge a battery from SOC 20% to 90%. Each
battery pack costs about USD$10, 000 in 2024 (NIO, 2024). The battery swapping cost ct is charged based on
time-of-use electricity prices. Figure S.1 demonstrates the time-of-use prices of Shanghai (Shanghai Municipal
Development & Reform Commission, 2022). We set the unit transshipment cost to be USD$1.1 per battery per
km as in Qi et al. (2023). The penalty cost is hard to quantify since it depends on the specific contract between
the operator and customer Schneider et al. (2018), we set it as USD$10000 and perform an extensive sensitivity
analysis later.
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Table S.1: Input parameters

Parameter Symbol Value

Number of peiods T 12
Inventory window [τ ti, τ

t
i] [5, 20]

Charging time TC 3
Unit battery cost K 10000
Charging cost ct see Figure S.1
Transshipment cost p 1.1
Penalty cost bt 10000

C.2 Details for Out-of-Sample Tests

To further examine the performance of four models in perturbed distributions to validate our model’s robustness.
In particular, for event s̃ = 1, we fix the out-of-sample mean µ1

out = µ1; for event s̃ = 2, we vary the out-of-
sample mean by µ2

out = (1 + ∆)µ2 where ∆ take values in {−0.1,−0.05, 0, 05, 0.1}. In addition to the normal
distribution, we consider generating demand samples independently of two other distributions: uniform and
Poisson. The range of the uniform distribution is set as [0.5µts

i , 1.5µts
i ]. The average arrival rate of the Poisson

distribution is set as µts
i .

C.3 Additional Out-of-Sample Test Results

Following the experiment setting in Section 6.1, we report the battery numbers of each station. Figure S.2
presents the number of initial batteries at the central charging station 0 and the total batteries at all stations
when s̃ = 2. We can see in Figure S.2(a) that RS-S, DRO-S, and DRO-NS stock almost the same number of
batteries at the charging station 0, while RS-NS holds the least and RS-PE holds the most batteries at station 0
(68 and 432 respectively). It turns out that RS-NS holds the lowest battery stock in total among the five models
but incurs more inventory violations than the others, as shown in Figure S.2(b). By contrast, RS-PE stocks
the highest number of batteries, all of which are kept at the central charging station. This is mainly because
the RS-PE overfits the in-sample data, and the result ELDR fails to adapt well to the out-of-sample demands.
The DMs turn out to be overly risk-averse; they prioritize centralized inventory over distributed inventory.
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(a): Initial battery inventory at charging station 0
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(b): Total battery inventory at all stations

Figure S.2: Comparison of initial battery inventory of five models (s̃ = 2)

Figure S.3 demonstrates the battery dynamics at each swapping station when s̃ = 1, which confirms the
conclusion in Section 6.1. Our proposed RS-S model demonstrates slightly more stable inventory dynamics than
the other four models.

Due to the limited space in the main body, we present the detailed out-of-sample results in the following
tables. Table S.2 documents the detailed average performance of the four models under six distributions as
in Figure 9. Table S.3 show the inventory violation statistics for RS-S under three flexibility structures. The
observation in Section 6.2 is stable, the chaining structure is effective in lateral transshipment. Table S.4 displays
the impacts of the Budget on the out-of-sample inventory violation of each model. Similar to the results in
Section 6.4, our RS-S model dominates RS-NS in all metrics.
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Figure S.3: Mean values of battery inventory dynamics at swapping stations for five models (s̃ = 2)

Table S.2: Average Performance of RS-S and Benchmark Models Under Different Distributions

Model Prob Mean Std. VaR95% CVaR95%

RS-S 1.00 1.00 1.00 1.00 1.00
DRO-S 2.03 2.20 1.50 3.46 1.87
DRO-NS 2.03 2.20 1.50 3.46 1.87
RS-NS 2.34 3.64 2.81 4.52 3.81

Table S.3: Comparison of Inventory Violation under RS-S for Three flexibility structures

G Prob % Mean Std. VaR95% CVaR95%

Dedicated 10.55 0.58 2.02 7.48 8.21
2-chain 8.05 0.38 1.80 4.37 5.70
Full chain 11.20 0.62 2.40 11.72 6.56

12

Page 47 of 49

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1.434.964.4100



Table S.4: Comparison of Inventory Violation under RS-S and RS-NS Models for Different Budgets

Model δ Prob% Mean Std. VaR%95 CVaR%95

RS-S 0 3.34 0.25 2.49 0.00 0.25
1 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00

RS-NS 0 13.83 1.14 4.01 9.13 17.76
1 4.32 0.11 0.38 0.88 1.55
2 5.22 0.13 0.40 1.03 1.63
3 6.04 0.16 0.42 1.13 1.67
4 5.25 0.14 0.39 1.03 1.55
5 4.53 0.13 0.35 0.94 1.42
6 4.09 0.12 0.34 0.90 1.36
7 3.23 0.11 0.30 0.79 1.21
8 2.67 0.10 0.28 0.72 1.13
9 2.11 0.08 0.25 0.63 1.02
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